# INTERANNUAL CHANGES IN THE PELAGIC AND DEMERSAL COMMUNITIES OF THE SHARK BAY WORLD HERITAGE AREA





190012430

9064 Words

# **Declaration of Authorship**

Except where duly acknowledged here and further in the acknowledgments, all work presented is my own.

The initial dataset was provided by Jessica Meeuwig and the Marine Futures Lab. It consisted of 4 years (2017,2018,2019,2021) of seabed and midwater BRUVs data. This data was collected by a range of both past and present lab members, on a number of vessels. Analysis of years 2017-2019 was completed prior to my receipt of the dataset by Adam Jolly and Vyv Summers. Although minor revisions were made to data from years 2017-2019.

Instruction in the analysis or BRUVs data and identification of Western Australian taxa was provided by multiple members of the Marine Futures Lab, although most significantly by Adam Jolly and Vyv Summers.

Instruction in the use of CAL software was given by Thomas Tothill and instruction in producing calibration videos for CAL software was given by Adam Jolly.

Jessica Meeuwig instructed me in both the broader philosophy of statistical analysis and the practical implementation of multivariate analysis using PRIMER 7 with PERMANOVA +.

Hector Clarke 29<sup>th</sup> June 2023

## Acknowledgements

I would firstly like to thank Jessica Meeuwig for welcoming me into her lab and hosting this project. She provided the initial dataset upon which this project is based, including 3 years (2017,2018,2019) or previously analysed BRUVs data and one year of raw footage (2021). Her guidance and willingness to delve into statistical minutia were invaluable to this project. Further, for hosting writing weeks so myself and other students had the chance to develop our ideas and projects alongside her, and her mob of kangaroos.

I am grateful to the entirety of the Marine Futures lab for their advice and assistance throughout this project. In particular Adam Jolly and Vyv Summers for instructing me in the analysis of BRUVs footage and species identification. Difficult species identifications often involved a collaborative effort from Adam Jolly, Vyv Summers, Julien Magne, Thomas Tothill, Dr Chris Thompson, Dr Sean van Elden, Dr Naima Andrea López, Jack McElhinney, Lincoln Hood, Maicey Burkett, Nico Fassbender and myself. For these discussions and opportunities to learn from the experience of other lab members, I am grateful. Those lab members who assisted in the collection of the 2017-2021 Shark Bay dataset have my thanks and admiration. Not only for producing the raw dataset, but for doing so in adverse and testing conditions. Further credit is due to Adam Jolly and Vyv Summers for analysing years 2017-2019 of seabed and midwater BRUVs footage from Shark Bay.

I would like to thank my supervisor, Miguel. Beyond the usual commitments of managing my project from St. Andrews, I appreciate your advice and constant enthusiasm throughout. Thank you also for encouraging me to make the most of my placement and to jump at opportunities when they were presented.

The land and sea on which this data was collected was and continues to be the country of the Malgana peoples. The land upon which this project was undertaken, and data analysed is the country and spiritual home of the Whadjuk people. I would like to pay respects to all elders, past, present, and emerging.

# Contents

| Declar | ation of | f Authorship           | 2  |
|--------|----------|------------------------|----|
| Ackno  | wledge   | ments                  | 3  |
| Conte  | nts      |                        | 4  |
| Abstra | ct       |                        | 5  |
| 1.     | Introd   | luction                | 6  |
| 2.     | Metho    | ods                    | 11 |
|        | 2.1      | BRUVS                  | 11 |
|        |          | 2.1.1 Seabed BRUVs     | 12 |
|        |          | 2.1.2 Midwater BRUVs   | 12 |
|        | 2.2      | Video Processing       | 15 |
|        | 2.3      | Data Preparation       | 16 |
|        | 2.4      | Statistical Analysis   | 17 |
| 3.     | Result   | S                      | 17 |
|        | 3.1      | Metadata               | 17 |
|        | 3.2      | Sampling Effectiveness | 18 |
|        | 3.3      | Species Recorded       | 19 |
|        | 3.4      | Univariate Analysis    | 20 |
|        | 3.5      | Multivariate Analysis  | 22 |
| 4.     | Discus   | ssion                  | 25 |
| Refere | nces     |                        | 34 |
| Appen  | dices    |                        | 42 |

## Abstract

Effective management and conservation of marine biodiversity requires a strong understanding of how marine systems respond to interannual variation and anthropogenic disturbances. Traditional perspectives on marine assemblages neglect to consider the interactions between benthic and pelagic habitats which are a significant component in the function of both systems. This project utilised a multiyear (2017,2018,2019,2021) dataset of both seabed and midwater baited remote underwater video systems (BRUVs) deployments from the Shark Bay World Heritage Area to investigate interannual changes in community composition as well as broader metrics of abundance, richness, biomass, and length for pelagic and demersal assemblages. In total, 297 taxa were recorded, 272 from seabed surveys and 47 from midwater surveys. Interannual trends in benthic and pelagic habitats were not similar but both habitats showed significant shifts in community composition between each year. Pelagic assemblages showed clear signs of excessive fishing pressure favouring large numbers of small fishes. Benthic assemblages were more stable, potentially due to the remoteness of the study area discouraging recreation fishermen. Several vunerable species were recorded including multiple young of the month shortfin mako sharks, Isurus oxyrinchus. Overall, the area between the west of Dirk Hartog Island and the Zuytdorp Cliffs presents a strong candidate for legislative protection in accordance with Australia's commitment to protecting 30% of its oceans by 2030.

#### 1. Introduction

Understanding the ecology of both benthic and pelagic marine systems is imperative in a changing world. The Pelagic regions of the world's oceans are the largest habitat on the planet, providing >80% of fishes consumed by humans (Pauly et al., 2002) and hosting 2.7 times the amount of photosynthesis that occurs in tropical rainforests (Field, 1998). Coastal benthic habitats occupy only around 8% of the area in our oceans yet contain among the most diverse systems on Earth (Small, Adey and Spoon, 1998) and produce in excess of 12 billion USD per annum (Constanza et al., 1997). The conservation of these marine habitats and their associated fauna and flora is therefore critical. Global leaders have committed to conserving marine diversity by protecting 30% of the worlds oceans by 2030 (O'Leary et al., 2016; Dinerstein et al., 2019). More recently, this has been supported by the 2023 High Seas Treaty to advance the creation of marine protected areas outside the exclusive economic zones of individual nations (Gjerde, Harden-Davies and Hassanali, 2022). Whether these broad targets will be met remains to be seen, although more specific measures are increasingly necessary. Vunerable groups such as reef sharks have shown a 73% decline (Simpfendorfer et al., 2023), whereas larger shark species have shown up to a 92% decline (Roff et al., 2018) within the last half century. The removal of large predators such as these can trigger trophic cascades, increasing the fragility of the system to disturbance (Ruppert et al., 2013). Many taxa do not solely utilise benthic or pelagic habitats but instead move between the two (Preciado, Velasco and Olaso, 2008; Heithaus et al., 2007). Basing conservation and management decisions on data that considers only one of these habitats excludes a significant portion of the lifespan of these taxa. Creating large marine protected areas, such as those that would be necessary to reach the 30 by 30 target, requires a more holistic view of marine systems and the effects of potential disturbances.

This project primarily aims to identify interannual trends in both pelagic and benthic marine communities. Similarities in trends between the two may indicate overarching causal factors driving shifts marine communities. If there is a clear response, such as an inverse relationship then this would indicate that there may be strong ecological links between habitats which require further research. And if there is no relationship at all between habitats then we must assume that interactions arent significant or interannual trends are driven unilaterally by a more dominant factor. Species specific trends must also be

considered to identify which taxa are driving compositional change and if specific groups show consistent decline.

Pelagic and benthic habitats are not ecologically isolated with multiple modes of exerting influence on one another. Traditionally, research on benthic-pelagic coupling and linkages has focused on inanimate processes (Griffiths et al., 2017) and planktonic interactions (Kirby et al., 2007). More recently attention has been drawn to interactions mediated by higher trophic level, macroscopic organisms (Ricci et al., 2022). Taxa that utilise both benthic and pelagic habitats provide a mechanism for nutrient transport between the two. Large Predatory species such as the tiger shark, Galeocerdo cuiver, have been recorded moving between both habitats in Shark Bay (Heithaus et al., 2007). Additional shark species as well as large piscivorous fishes have been shown to utilise both benthic and pelagic habitats for foraging (Torres-Rojas et al., 2009; Rajesh et al., 2017). The most direct method of nutrient transfer mediated by these species involves their mortality and consumption, whether that be in benthic or pelagic habitat. However, behavioural factors cannot be omitted. Taxa that feed in both habitats may have significant non-consumptive effects (Mitchell and Harborne, 2020), altering prey behaviour and incurring additional metabolic costs (Anson et al., 2013). Species that feed sparingly in benthic habitats for example, may still alter prey behaviour and energy systems from simply being present in the vicinity. Predator mediated linkages are not limited to motile species. Suspension feeding organisms including sponges (Lesser, 2006; Pile and Young, 2006), bivalves (Porter, Cornwell and Sanford, 2004), and corals (Naumann et al., 2009) may accumulate nutrients from pelagic plankton. Additional nutrients increase growth rates of calcifying organisms (Ferrier-Pages et al., 2003), increasing habitat complexity, reef profile, and refugia density for demersal species. Another mechanism for benthic-pelagic linkages involves ontogenetic differences in habitat utilisation. Many marine species have pelagic larval stages allowing energy transfer through the settlement of larvae, or their consumption by pelagic planktonivores. The inverse is also true for pelagic species with benthic larval stages. Literature on this mechanism has again focused on plankton (Marcus and Marcus, 1998), although higher trophic level examples would also be valid, such as reef fishes with pelagic larvae. The complex and varied nature of benthic-pelagic interactions portray unilateral effects as an oversimplification where the impacts on the alternate habitat are not considered. It is for this reason that to gain a full understanding of

anthropogenic effects on marine environments, we must investigate benthic and pelagic systems alongside each other.

The chosen study site was the Shark Bay World Heritage Area. More specifically, the Western side of Dirk Hartog Island south to the Zuytdorp cliffs as shown in figure 1. . This specific area represents a transitional zone between the shallow coastal areas of Shark Bay and the nearshore pelagic habitat found further West. As such, benthic-pelagic interactions, particularly those mediated by movement, will be more apparent due to occuring on smaller spatial scales. Furthermore, close proximity between benthic and pelagic habitat supports a broader sampling effort which is imperative in such a diverse area.



**Figure 1.** Map showing the study area of West Shark Bay. Inset shows the position of Shark Bay in Western Australia (red box). Midwater BRUVs are marked as the mean geographic position of each string of 5 rigs. Dirk Hartog Island is marked by DH, Steep Point by SP, and the Zuytdorp cliffs by ZC.

Shark Bay is a large region of gulfs and peninsulas situated on the Westernmost point of the Australian mainland. The Francois-Peron peninsula divides the interior into two major gulf systems which are bounded on the north side by the islands of Dorre and Bernier and Dirk Hartog to the west. Hydrological isolation and high evaporation rates in the internal gulfs produce hypersaline water which migrates northward and forms an inverse wedge halocline feature in calm conditions (Hetzel et al., 2015). This saline water extrudes through three channels, the Geographe channel, Naturaliste channel and Southern Passage to interact with oceanic current systems. The Leeuwin current is the most dominant of these and flows southward along the coastline of Western Australia, bringing warm, hyposaline water to greater latitudes (Waite et al., 2007). Although the Leeuwin occasionally intrudes into the interior of Shark Bay (Hetzel et al., 2013) its influence is most prevalent along the Western side of Dirk Hartog Island, southward to the Zuytdorp cliffs.

The temperature anomaly created by the Leeuwin current supports the range extension of many tropical species further south, particularly in offshore and more westerly areas (Phillips and Huisman, 2009; Watson and Harvey, 2009). Marine assemblages in Shark Bay are therefore comprised of a mixture of tropical species near the southern extent of their range, and subtropical species at their northernmost extent. The subsequent community is comprised of a highly competitive assortment of species for whom Shark Bay is their only overlap in distribution. The Leeuwin current also drives productivity in Western Australia by de-stratifying the water column and introducing relatively nutrient-rich water to coastal areas (Koslow et al., 2008). In the context of Shark Bay, this would imply greater productivity in more Westerly areas that are influenced more directly by the Leeuwin current, such as our study area. Pelagic communities also benefit from the Leeuwin current. Large filter feeding species such as the whale shark, *Rhincodon typus*, are more abundant in years where the Leeuwin current is stronger (Hanson and McKinnon, 2009). The effects of the Leeuwin current are not uniform, however, and can be highly species specific (Caputi et al., 1996). The relative strength of the Leeuwin current may be a driving factor in interannual variability of marine assemblages in Western Australia, favouring different species depending on water temperature and current strength.

9

Due to its remoteness and lack of monitoring, archival fisheries data from Dirk Hartog and Steep point is sparse or non-existent. The history of recreational fishing in the interior gulfs of Shark Bay is better documented. The Australasian snapper, Pagurus auratus, (henceforth referred to as snapper), is a demersal (benthopelagic species), sparid which has been historically overexploited in Shark Bay. The Shark Bay snapper are uniquely split into reproductively isolated sub-populations by internal eddy currents in the gulfs (Nahas et al., 2003) making them highly vunerable to fishing pressure. The 1980s and 90s saw the effective collapse of the Shark Bay snapper population to 5 percent of its historic levels due to increased accessibility inviting excessive extraction by recreational fishermen (Christensen & Jackson, 2014). By the end of this period, 70% of snapper in Shark Bay were below minimum size limits and very few mature individuals were recorded. Slot size restrictions and bag limits were introduced to support the recovery of Shark Bay snapper, but management has not been temporally consistent with only 2014-2020 having a catch effort below the maximum sustainable yield for this species (Fairclough, 2021). More recently, other commonly targeted species such as grass emperor, Lethrinus laticaudis, have been identified as vunerable to overexploitation due to poor population connectivity in Shark Bay (Fairclough, Ayvazian and Newman, 2022). West Dirk Hartog, Steep point and the Zuytdorp cliffs are comparatively more remote than the inner gulfs with only 4 wheel drive access and no nearby boat ramps. We would therefore expect exploitation of demersal communities to occur to a lesser extent than is observed in the inner gulfs. The closest settlement and boat ramp to steep point is situated in the town of Denham. Denham is the most major settlement in Shark Bay, found on the Western side of the Francois-Peron peninsula and having a population of 964 (Christensen and Jones, 2020). Although the local population is relatively small, Shark Bay receives in excess of 120,000 visitors per year (Tourism WA, 2022) placing large amounts of pressure on the local ecosystem and undoubtedly contributing to local fishing pressure. Nonetheless, increasing access could imperil the areas around West Dirk Hartog and Steep Point to a similar degree of overexploitation as has been historically observed in the inner gulfs.

#### 2. Methods

#### 2.1 BRUVs

Pelagic and demersal marine assemblages were sampled with the use of baited remote underwater video systems, henceforth referred to as BRUVs. BRUVs are defined by the presence of one or more underwater camera, to which bait is attached and then deployed for a given duration. Video from these cameras is later processed and analysed for the presence and abundance of marine fauna. These methods have the advantage of being entirely non extractive for use in, or around marine parks and vunerable species. Multiple BRUVs rigs can be deployed simultaneously, allowing for large sampling efforts which require relatively little time in the field. Areas such as Dirk Hartog Island have variable and often challenging weather and swell conditions, only permitting sampling during certain weather windows so requiring high sampling efficiency.

Individual BRUVs varied in exact specification between two types and whether they were used for sampling benthic or pelagic habitats, but all followed the same overall structure. Two GoPro Hero video cameras were mounted on a steel frame 80cm apart, with a 4 degree inward rotation on each camera (Santana-Garcon, Newman and Harvey, 2014). A perforated bait bag or can was affixed to a steel arm equidistant from each camera. The bait bag protruded forward so that it was always in the frame of video, such that any fauna attracted by the bait plume would be recorded. BRUVs remain in deployment for a standardised time of 1 or 2 hours, depending on habitat, to allow the bait plume time to disperse and attract more distant fauna through olfactory cues (Santana-Garcon, Newman and Harvey, 2014). Bait consisted of approximately 1kg of sardines, *Clupeidae spp.*, per rig, which were partially mashed to release oils and aromatic compounds during deployment.

All BRUVs used were Stereo-BRUVs. Stereo-BRUVs include two separate cameras recording a set distance apart so that fork length estimates could be made through photogrammetric methods (Harvey and Shortis, 1995). Rigs were calibrated in a calm, clear body of water prior to each expedition to account for variability in exact camera angle and position. Calibration involved recording a cube of known dimensions moving through a range of angles and positions. This video was then imported into CAL software (SeaGIS Pty LTD, 2006a) to produce a calibration file for each camera which was then used when producing

photogrammetric measurements of taxa. Before the deployment of each rig, both cameras were synchronised using a large hand clap along the bait arm. Obvious gestures were used for synchronisation to avoid mismatching frames during analysis and so maximise the accuracy of fork length estimates.

#### 2.1.1 Seabed BRUVs

Demersal assemblages were sampled using seabed BRUVs. These consisted of a rig frame which rests on the seafloor for the duration of its deployment. For lighter rigs, 3 legs were used to maintain the stability of the rig and prevent rolling in strong currents. These legs also elevated the cameras, preventing the video being obscured by kelp or macroalgae cover. Large expanses of soft sand were avoided in high swells due to suspended sediment obscuring the view of the camera. Weights were attached to the base of the rig for stability. When necessitated by large swell, The number of weights could be increased to prevent rolling. BRUVs were deployed independently across a range of seabed habitat types and depths ranging from 1-39 metres (*Appendix.1*). Rigs were deployed for a duration of 1 hour from the moment the rig settles on the seafloor. A surface buoy was attached to the top of the BRUVs rig with at least 30 metres of 8mm polypropylene rope to mark the rig's location for later retrieval. When necessitated by large swell, weights were used to stabilise the rig and prevent rolling in strong currents.

#### 2.1.2 Midwater BRUVs

Pelagic environments are devoid of solid surfaces which BRUVs rigs can be affixed to, so rigs are instead allowed to drift for the duration of their deployment. Tracking and retrieving multiple drifting rigs in quick succession is impractical so rigs are placed in a longline formation of 5. Each rig is attached to adjacent rigs by 200 metres of 8mm polypropylene rope to form an 800 metre long string that drifts as a single unit (Thompson et al., 2021). The combined bait plume of a string is larger than that of an individual rig and is more effective at attracting pelagic taxa with sparse or patchy distributions.

Midwater BRUVs were deployed at 10 metres depth by attaching a surface buoy with 10 metres of 8mm polypropylene line. Weights were attached to the base of each rig to stabilise the video frame from the effects of the swell. Midwater strings were deployed for 2 hours from the moment each rig settles at depth. Strings could drift significant distances

during this time so a flag with a radio beacon was attached to the end of each string. The approximate direction and distance of a string could then be found using the relative strength of the VHF radio signal for retrieval.



**Figure 2.** Example images from midwater (**A**-**D**) and seabed (**E**-**H**) BRUVs video showing both rig specifications. Species shown are as follows, **A**. *Balaenoptera acutorostrata*, **B**. *Carcharhinus obscurus*, **C**. *Carcharhinus plumbeus*, **D**. *Isurus oxyrhinchus* juvenile, **E**. *Carcharhinus melanopterus* with fishing hooks in its mouth, **F**. *Coris auricularis*, **G**. *Octopus djinda*, **H**. *Epinephelus lanceolatus*.

#### 2.2 Video Processing

Video was recorded at a resolution of 1080p and frame rate of 60fps before being extracted from cameras in MP4 format post-deployment. MP4 files were later converted to AVI format using Xilisoft Video Converter Ultimate (Xilisoft Corporation,2016). Video files were imported into EventMeasure software from SeaGIS for analysis (SeaGIS Pty LTD, 2006b). The left video of each rig was prioritised for species identification and abundance measurements. In the case that the left video was absent or cloudy due to condensation inside the housing, the right was used.

Each video was watched by an analyst for the duration of its soak time. This was defined as from the point when the rig settles, (either on the seabed or at 10 metres depth), until the full soak time was reached, (1 hour for seabed, 2 hours for midwater). Upon their first appearance, taxa were identified to the lowest possible taxonomic resolution. Abundance was measured by recording the maximum number of a taxa present in a single frame of video, the MaxN. The MaxN provides a conservative estimate of the abundance of each species in each video. All identifications were checked by a second analyst and, if necessary, a third . Once a consensus on each taxa is reached, fork length measurements could be made.

Videos from the left and right side of each rig were loaded into EventMeasure simultaneously and synchronised as closely as the frame rate would allow. 3 dimensional measurements of each taxa were achieved through photogrammetric methods, involving placing two points on both frames corresponding to the desired dimension of the taxon. The majority of fishes were be measured by fork length, from the front of the head to the fork of the caudal fin. Rays, *Batoidea spp.*, were measured by disc width, from one wingtip to the other. Sea turtles, *Cheloniidae spp.* were measured by carapace length. Billfishes, *Istiophoriformes spp.*, were measured to the lower jaw as the length of the upper bill was too variable to be used for biomass calculations. Due to distortion from the camera lens, measurements from the outer edges of the frame were avoided. To ensure the validity and accuracy of fork length estimates, taxa had to be clearly visible in both frames and at an angle no more than 45 degrees to perpendicular from the rig. Certain groups such as sea snakes, *Hydrophidae spp.*, and moray eels, *Muraenidae spp.*, were rarely straight and perpendicular from the camera so, if at all, they were measured at their least sinuous.

15

#### 2.3 Data Preparation

Species, MaxN and length data were extracted from EventMeasure and subsequently cleaned of unsuitable data points. Firstly, length measurements with a level of precision above 20% of the measured length or an RMS greater than 20mm on either side were deemed too inaccurate. Taxa which could not be identified to any level, either due to poor water clarity or only being present for a few frames of video were excluded. Cetaceans and sea turtles were excluded from length and biomass data due to their size and mass overwhelmingly biasing samples.

Not every individual recorded could be measured due to only appearing on one camera or appearing at too severe an angle from the frame of video to gain an accurate measurement. These practicalities along with necessary exclusions of some length estimates meant that some taxa were left without a length estimate for biomass calculations. Length estimates for these taxa were imported from other sources. Lengths of the taxa from the same string were prioritised, then lengths from the same expedition, from the same location and finally from a larger dataset encompassing locations from across Western Australia. For individuals only identified to a genus or family, the mean of the length estimates from that taxa were used.

Weight was calculated from length estimates using Length-Weight ratios imported from FishBase (Froese and Pauly, 2019) and SeaLifeBase (Palomares and Pauly, 2019). Some species had length-weight ratios which used length measurements other than fork length such as total length. For these species, a length-length ratio from FishBase or SeaLifeBase was first used to obtain an estimate of the desired length type for length-weight calculations. For species with no available length-weight or length-length ratio, the ratio of a closely related species was used. Similarly, for taxa only identified to the genus or family level, ratios for the most commonly observed species were used.

Four univariate metrics were calculated from the BRUVs outputs. Taxonomic richness (TR), Total Abundance (TA), Total Length (TL) and Total Biomass (TB). Richness was calculated as the number of taxa present in each deployment, abundance as the sum of all MaxNs for a deployment. Total length was the sum of the lengths of a taxa multiplied by its MaxN. Length was multiplied by the length weight ratio to give the mass of individual taxa, then multiplied by its MaxN and summed for each deployment to produce total biomass. As Midwater BRUVs drift in strings of 5 that are 200 metres apart, they cannot be considered statistically independent. Hence, data from midwater deployments was totalled into strings. Abundance per string was calculated as the sum of the mean abundance per deployment.

#### 2.4 Statistical Analysis

Michaelis-Menten species accumulation curves were used to ascertain the proportion of the species pool recorded by our surveys. Smax was used as an estimate of the available species pool and compared to the total species richness for each survey to ensure that there were no significant sampling deficits.

We tested for interannual differences in univariate metrics through Permutational analysis of variance (PERMANOVA) in PRIMER with PERMANOVA+ software (Anderson, 2017). These tests were based on log<sub>10</sub>(x+1) transformed Euclidian distance matrices of taxonomic richness, total abundance, total length, and total biomass for both demersal and pelagic communities. Subsequently, pairwise tests between years for each metric and habitats were used to distinguish individual years. Community composition was compared between years using multivariate PERMANOVAs in the same software. These tests were based on Bray-Curtis resemblance matrices of square-root transformed abundance data. Pairwise comparisons of composition were included to ascertain which years were distinctly different. To visualise differences between years, canonical analyses of principal coordinates plots were produced in PRIMER for demersal and pelagic assemblages. These included specific vectors for taxa with a Pearson rank correlation of > 0.3 to identify which species are driving compositional change between years.

#### 3. Results

#### 3.1 Metadata

Surveys took place in Shark Bay across four years, 2017, 2018, 2019 and 2021. A total of 375 midwater BRUVs and 245 seabed BRUVs were deployed during these expeditions. Expeditions took place in either August or September and ranged in length from 6 days in 2017 to 18 days in 2019. Seabed deployments were largely consistent in depth with an overall median of 17 metres. Seabed deployments in 2017 were broadly deeper than in other years, with a median depth of 28 metres. as compared to 19,18 and 17 metres in 2018, 2019 and 2021 respectively. Deployment ranged from 6.35am at the earliest to 16.29pm at the latest. Number of deployments per day was mostly consistent between expeditions with a mean of 16.3 ±1.79 se (standard error) seabed rigs deployed per day and 18.7 ±1.73 se midwater deployments per day across all years. 99.3% of midwater BRUVs and 80.8% of seabed BRUVs deployments produced useable data with the most common reason for exclusion being strong currents tipping rigs.

**Table 1a.** Metadata summary for midwater BRUVs deployments by expedition. Each string consisted of 5 rigs in a longline formation. Dates are in DD/MM/YYYY format.

| Expedition     | No. Deployments No. Strings | Start Date | End Date              |
|----------------|-----------------------------|------------|-----------------------|
| Shark Bay 2017 | 75                          | 15         | 15/09/2017 21/09/2017 |
| Shark Bay 2018 | 100                         | 20         | 06/08/2018 14/08/2018 |
| Shark Bay 2019 | 100                         | 20         | 17/09/2019 24/09/2019 |
| Shark Bay 2021 | 100                         | 20         | 23/08/2021 26/08/2021 |

**Table 1B.** Metadata summary for seabed BRUVs deployments by expedition. Depth is where the rig

 settles and remains for its soak time. Dates are in DD/MM/YYYY format.

| Expedition     | No. Deployments | Depth Range (metres) | Start Date | En         | d Date     |
|----------------|-----------------|----------------------|------------|------------|------------|
| Shark Bay 2017 | 4               | .0 19                | - 37       | 15/09/2017 | 20/09/2017 |
| Shark Bay 2018 | 7               | 5 2                  | - 39       | 04/08/2018 | 12/08/2018 |
| Shark Bay 2019 | 8               | 5 4                  | - 33       | 09/09/2019 | 27/09/2019 |
| Shark Bay 2021 | 4               | 5 1                  | 35         | 28/08/2021 | 30/08/2021 |

#### 3.2 Sampling effectiveness

Michaelis-Menten species accumulation curves were run for each year and habitat type (table.2). Smax is the estimated available species pool which ranged from 133.92 to 194.6 demersal taxa and 22.69-28.11 pelagic taxa. When compared to the number of species recorded, midwater samples recorded a larger portion of the species pool with a mean of 91.3% ±1.65 se. Seabed BRUVs recorded a mean of 82.2% ±1.33 se of the species pool. Demersal Smax increased from 2017-2019 (133.92-194.6) and subsequently decreased in 2021 to 182.35. Pelagic Smax was more consistent between years, ranging from 22.69 to 28.11, only increasing slighting during 2018. Percentage detection of the species pool was lowest for demersals in 2017 (78.40%) and greatest in 2018 (85.92%). The percentage of the species pool detected in pelagic surveys was more variable, ranging from 88.94% in 2018 to 96.96% in 2019. B is the estimated sampling effort required to detect 50% of the available species pool. Demersal taxa had a slower rate of species acquisition with a mean of

14.3±2.01 se as compared to 3.38±0.59 se for pelagic taxa. The value of B for demersal and pelagic habitats followed similar trends to Smax. Demersal B increased until 2019 (9.8-20.55), then decreased in 2021 (11.91). Pelagic B was mostly consistent (2.08-3.19) apart from 2018 which was noticeably higher (5.06).

**Table 2.** Table of values from Michaelis-Menten species accumulation curves. Smax is the estimate of the available species pool, B is the sampling effort required to detect 50% of the species pool. No. species is the total taxonomic richness per year, per habitat.

| Habitat  | Year | Smax   | В     | No. Species | % Smax Recorded |
|----------|------|--------|-------|-------------|-----------------|
| Demersal | 2017 | 133.92 | 9.8   | 105         | 78.40           |
|          | 2018 | 158.28 | 15.41 | 136         | 85.92           |
|          | 2019 | 194.6  | 20.55 | 160         | 82.21           |
|          | 2021 | 182.35 | 11.91 | 150         | 82.26           |
| Pelagic  | 2017 | 25.74  | 2.08  | 23          | 89.36           |
|          | 2018 | 28.11  | 5.06  | 25          | 88.94           |
|          | 2019 | 22.69  | 2.75  | 22          | 96.96           |
|          | 2021 | 24.51  | 3.19  | 22          | 89.76           |

#### 3.3 Species Recorded

In total, 297 taxa were recorded from 66 families and 147 genre (Appendix 2.). Demersal surveys recorded 272 taxa, 250 of which were exclusively recorded from this habitat. 47 taxa were recorded from pelagic surveys, of which 25 were exclusive. 22,319 individuals were recorded, of which 44.9% were identified to a species level, 33.7% to a genus, 17.9% to a family and 1 individual to an order. 3.4% of individuals were recorded as either unknown or a juvenile fish too young to identify. Individuals identified to a genus level were sometimes indistinguishable between two species. The most common example was *Carcharhinus spp*. Where *Carcharhinus obscurus* and *Carcharhinus brachyurus* were difficult to confidently identify from a distance or in cloudy water so were assigned to a more general taxon. The most abundant families were demersal schooling fishes of the families *Carangidae*, *Labridae*, *Pomacentridae*, and *Caesionidae* with total MaxN's exceeding 1000 individuals. 22 families were represented by 5 or less individuals, with 9 of those being recorded from only a single individual. At least one fork length measurement was obtained for 73.7% of taxa. 24.9% of taxa were only able to be measured only once across all surveys and 26.3% used mean measurements from Western Australia as a whole.

22 taxa were recorded from both demersal and pelagic surveys. Sharks of the family *Carcharhinidae* comprised the greatest number of shared taxa with 6 distinct species and 2

more general classifications, *Carcharhinus spp., Carcharhinidae spp.*. Carangid species were also abundant in both habitats, often forming in large schools of *Decapterus spp*. or *Carangidae spp*. Other notable shared taxa included sea snakes, *Elapidae*, Filefishes, *Monocanthidae*, and tuna and mackerel, *Scombridae*. Few of these shared taxa were recorded evenly between both habitats with the 81.8% favouring Pelagic habitats and 13.6% favouring demersal habitats.

Across all four surveys, several notable and rare species were recorded. Multiple juvenile shortfin mako sharks, *Isurus oxyrinchus*, (*Fig.2*,D), were observed from pelagic surveys, with a mean length of 72.39 centimetres between 3 individuals. Minke Whales, *Balaenoptera acutorostrata*, (*Fig.2*,A), were recorded on 8 occasions from pelagic surveys and a single humpback whale was recorded from demersal surveys. 2 species of critically endangered *Rhinidae* were recorded, including *Rhyncobatus australiae*, N=15, and *Rhina ancylostoma*, N=1. Individuals of *Carcharhinus melanopterus* and *Carcharhinus obscurus* were observed from both benthic and pelagic habitats with one or more fishing hooks attached to their mouth (*Fig.2*,E). These individuals typically had deformation of the lower jaw on the side that the hook was fixed.

#### 3.4 Univariate Analyses

The relationship between taxonomic richness and year was significant in both benthic and pelagic habitats (Table 4). Pelagic taxonomic richness decreased overall from 2017 to 2021 and was significantly lower in 2018 (Appendix table 3.). Benthic taxonomic richness showed some variation, being significantly lower in 2019 than other years, but largely stayed consistent. Total abundance varied significantly by year in both benthic and pelagic habitats. Both habitats had a similar pattern of decreasing abundance from 2017 to 2018 which then increased year on year to 2021. This pattern was less severe for benthic assemblages where only 2021 was significantly higher than other years. Pelagic assemblages were significantly different from year to year (Appendix table 3.). Total length and biomass of benthic taxa was very stable between years and did not noticeably vary. Both Total length and biomass of benthic taxa significantly decreased from 2017 to 2021. Total length decreased more gradually than biomass, with a non-significant difference between 2017-2019 and a more dramatic decrease from 2019-2021. Benthic Biomass decreased most dramatically from





**Figure 3.** Panel of Mean of log<sub>10</sub> transformed univariate metrics: Taxonomic richness, total abundance, total fork length and total biomass. Error bars show 1 standard error. Letters signify the results of pairwise PERMANOVAs based on Euclidian distance matrices. Shared letters show lack of significant differences at a p value of <0.05.

| Benthic TF | R  |     |         |         |          |         |              | Pelagic Ti | R  |    |         |          |          |          |              |
|------------|----|-----|---------|---------|----------|---------|--------------|------------|----|----|---------|----------|----------|----------|--------------|
| Source     | df | SS  | 1       | ms      | psuedo-F | P(perm) | Unique perms | Source     | df | SS | 5       | ms       | psuedo-F | P(perm)  | Unique perms |
| Year       |    | 3   | 1.657   | 0.55234 | 3.963    | 0.0087  | 95507        | Year       |    | 3  | 0.38003 | 0.12668  | 7.108    | 0.0003   | 95507        |
| Residual   |    | 194 | 27.038  | 0.13937 |          |         |              | Residual   |    | 71 | 1.2654  | 0.017822 |          |          |              |
| Total      |    | 197 | 28.695  |         |          |         |              | Total      |    | 74 | 1.6454  |          |          |          |              |
| Benthic TA | 4  |     |         |         |          |         |              | Pelagic T/ | A  |    |         |          |          |          |              |
| Source     | df | SS  | 1       | ms      | psuedo-F | P(perm) | Unique perms | Source     | df | SS | 5       | ms       | psuedo-F | P(perm)  | Unique perms |
| Year       |    | 3   | 2.8605  | 0.9535  | 3.7236   | 0.0124  | 95430        | Year       |    | 3  | 4.8926  | 1.6309   | 20.346   | 1.00E-05 | 95659        |
| Residual   |    | 194 | 49.677  | 0.25607 |          |         |              | Residual   |    | 71 | 5.6912  | 0.080157 |          |          |              |
| Total      |    | 197 | 52.538  |         |          |         |              | Total      |    | 74 | 10.584  |          |          |          |              |
| Benthic TL | L  |     |         |         |          |         |              | Pelagic TI | L  |    |         |          |          |          |              |
| Source     | df | SS  | 1       | ms      | psuedo-F | P(perm) | Unique perms | Source     | df | SS | 5       | ms       | psuedo-F | P(perm)  | Unique perms |
| Year       |    | 3   | 0.56039 | 0.1868  | 0.99123  | 0.4007  | 95583        | Year       |    | 3  | 23.302  | 7.7674   | 4.4538   | 0.0069   | 95642        |
| Residual   |    | 194 | 36.559  | 0.18845 |          |         |              | Residual   |    | 71 | 123.82  | 1.744    |          |          |              |
| Total      |    | 197 | 37.12   |         |          |         |              | Total      |    | 74 | 147.13  |          |          |          |              |
| Benthic TE | в  |     |         |         |          |         |              | Pelagic Ti | в  |    |         |          |          |          |              |
| Source     | df | SS  | 1       | ms      | psuedo-F | P(perm) | Unique perms | Source     | df | SS | 5       | ms       | psuedo-F | P(perm)  | Unique perms |
| Year       |    | 3   | 0.51999 | 0.17333 | 0.4111   | 0.7466  | 95474        | Year       |    | 3  | 2.6267  | 0.87557  | 6.0104   | 0.001    | 95703        |
| Residual   |    | 194 | 81.796  | 0.42163 |          |         |              | Residual   |    | 71 | 10.343  | 0.14568  |          |          |              |
| Total      |    | 197 | 82.316  |         |          |         |              | Total      |    | 74 | 12.97   |          |          |          |              |

**Table 3.** Results tables from PERMANOVA analyses to test for significant differences in the four univariate metrics (TR,TA,TL,TB) by year. Significant p values (<0.05) are emboldened.

#### 3.5 Multivariate Analyses

Community composition varied highly significantly between years for both demersal and pelagic assemblages (Table 4a). Pairwise comparisons reveal that each year is compositionally different from one another for both habitat types to below a p value of 0.0001 (Table 4b.). Canonical analysis of principal coordinates (CAP) plots (Figure 4.) for benthic data suggests that 2017 and 2021 were highly distinct from other years, whereas there was a larger overlap between 2018 and 2019. Individual vectors showed strong correlations for smaller schooling fishes such as *Carangidae.spp*, *Caranx.spp*, and *Decapterus* spp. toward 2021. Contrastingly another small schooling fish taxon, Carangoides.spp, was found to be far more abundant in 2017 than in other years. Some larger piscivorous fishes such as Katsuwonus pelamis, Istiompax indica and Thunnus obesus were found to be more abundant in 2017 and, to a lesser extent 2018 and 2019. Carcharhinus obscurus and Echeneis naucrates were often recorded together and had very similar vectors, being more abundant in the first three years, particularly 2018 and 2019. Juvenile fishes were more closely associated with 2018 and 2019. Demersal community composition showed a clear shift, with each year forming a mostly distinct quadrant of the CAP plot. The progression from 2017 to 2021 forms a clockwise circular trend. Lethrinus miniatus and, to a lesser extent, Aspidontus taeniatus were more abundant in 2017. Some sandflat associated species were more common in 2018, such as Lagocephalus scleratus, Saurida undosquamis and the

critically endangered *Rhyncobatus australiae*. No single taxon was strongly associated with 2019 but *Pagurus auratus* was more abundant in 2019-2021. A large number of taxa were more abundant in 2021 than other years. These include multiple wrasse species, *Anampses geogrpahicus, Suezicthys cyanolaemus, Labroides dimidiatus, Choerodon rubescens, Choerodon cauteroma,* larger piscivores, *Carcharhinus limbatus, Grammatorcynus bicarinatus,* and smaller benthic species, *Epinephelus rivulatus, Parupeneus chrysopleuron.* 



**Figure 4.** Canonical analysis or principal coordinates (CAP) plots based on Bray-Curtis resemblance matrices of square root transformed data of pelagic (**A**) and demersal (**B**) assemblages. Each data point refers to a single seabed deployment or midwater string. Individual Vectors are shown for taxa with a correlation of greater than 0.3.

**Table 4a.** Results table from multivariate PERMANOVAs based on Bray-Curtis resemblance matrices of square root transformed data to test for differences in community composition between years. Significant p values (<0.05) are emboldened.

| Pelagic  |    |     |          |        |         |          |              |
|----------|----|-----|----------|--------|---------|----------|--------------|
| source   | df | SS  | MS       | Р      | suedo-F | P(perm)  | Unique perms |
| Year     |    | 3   | 60451    | 20150  | 16.26   | 1.00E-05 | 91534        |
| Residual |    | 71  | 87985    | 1239.2 |         |          |              |
| Total    |    | 74  | 1.48E+05 |        |         |          |              |
|          |    |     |          |        |         |          |              |
| Benthic  |    |     |          |        |         |          |              |
| source   | df | SS  | MS       | Р      | suedo-F | P(perm)  | Unique perms |
| Year     |    | 3   | 57011    | 19004  | 5.3339  | 1.00E-05 | 88027        |
| Residual |    | 194 | 6.91E+05 | 3562.9 |         |          |              |
| Total    |    | 197 | 7.48E+05 |        |         |          |              |

**Table 4b.** Results table from pairwise multivariate PERMANOVAs based on Bray-Curtis resemblance matrices of square root transformed data to test which years are significantly different in terms community composition. Significant p values (<0.05) are emboldened. The number of unique permutations is included in brackets.

| Pairwise P | ermanova            |                     |                     |             |                     |                     |
|------------|---------------------|---------------------|---------------------|-------------|---------------------|---------------------|
|            | 2017/18             | 2017/19             | 2017/21             | 2018/19     | 2018/21             | 2019/21             |
| Pelagic    | <b>1e-5</b> (93999) | <b>1e-5</b> (94666) | <b>1e-5</b> (94832) | 1e-5(94609) | <b>1e-5</b> (94527) | <b>1e-5</b> (94675) |
| Benthic    | <b>1e-4</b> (92123) | <b>2e-5</b> (92105) | <b>3e-5</b> (91104) | 1e-5(92441) | 1e-5(92082)         | <b>7e-5</b> (92485) |

#### 4. Discussion

Pelagic metrics suggest an increase in human intervention over time through a decrease in biomass and length and increase in abundance. This is consistent with the removal of larger bodied, high trophic level fishes from an ecosystem, driving mean length and biomass down (Pauly et al., 1998). The Concurrent increase in abundance can be explained as a response to the removal of larger individuals. Assuming that trophic level and body mass are correlated in pelagic systems (Ohshimo et al., 2016), reduced predation pressure would allow smaller taxa to become more numerous. Competitive release may also play a minor role, although the lack of fixed territorial boundaries in pelagic habitats makes it unlikely to be a significant mechanism in the shift toward smaller taxa (Dulvy et al., 2004). Multivariate CAP vectors further reinforce this trend as smaller fishes such as *Decapterus spp., Caranx spp.* and *Carangidae spp.* are strongly associated with 2021 as compared to other years.

The increase in abundance driven by small fishes was still insufficient to compensate for the loss of biomass from larger taxa. Large recreationally targeted species such as *Istiompax* 

indicia and Katsuwonus pelamis were more closely associated with 2017, when biomass was greatest. Some groups such as Seriola sp. and Istiophoridae spp. were present in 2017-2019 yet absent from 2021. Pelagic species are known to have patchy and uneven distributions (Boyd et al., 2015), but the absence of entire families and genera which were previously present is indicative of a shift in the structure of Shark Bay's pelagic food-webs. Mid-sized fishes such as Seriola spp., Coryphaena hippurus and Katsuwonus pelamis are prized targets for recreational fishermen. Their absence or lesser abundance in 2021 could be confidently interpreted as their gradual removal from the system. Large pelagic taxa such as *Carcharhinidae spp.* And *Istiophoridae spp.* are occasionally retained by recreational fisherman (Ryan, Lai and Smallwood, 2022), but in insufficient quantities to fully explain their reduced abundances. Scarcity of large pelagic fishes may be primarily due to migration in response to overexploitation of food sources .Pelagic predators are known to aggregate in areas of higher prey density (Benoit-Bird and Au, 2003; Green et al., 2020), so larger pelagics may have migrated elsewhere in response to insufficient prey biomass of medium and small fishes around Shark Bay. The subsequent lack of pelagic predators would offer trophic release of smaller species, allowing for greater abundances but still in reduced biomasses.

Biomass and length of demersal communities was highly stable from 2017 to 2021 despite changes in abundance and richness. One interpretation could be that Shark Bay has sufficient functional redundancy to ensure ecosystem stability despite significant shifts in community composition. This interpretation could be challenged by the relatively low functional redundancy of subtropical (Gilby, Tibbetts and Stevens, 2017) and coral reef (Hoey and Bellwood, 2009) systems in Australia. Many subtropical and tropical species ranges overlap in Shark Bay, as evidenced by our surveys (Appendix Table 2). The resulting community may be more robust than either subtropical or tropical communities due to the presence of multiple functionally similar species at the extremity of their range. Functionally similar species also often occupy similar body sizes (Jacob et al., 2011; Rudolf et al., 2014) allowing total biomass and length metrics to be maintained despite shifts in abundance within functional groups.

Alternatively, stable length and biomass could be a result of sustained fishing efforts in Shark Bay suppressing populations of larger demersals. Demersal fisheries in Shark Bay have been historically overexploited, particularly in the case of snapper, *Pagrus auratus*, (Christensen

26

and Jackson, 2014). Recreational fishing pressure in Shark Bay has been restricted through bag limits and tag lottery systems but these efforts may not be sufficient to allow the recovery of demersal fisheries. In particular, fixed size limits shift pressure on larger individuals and encourage changes in size structure of demersal communities (Moland Olsen et al., 2005; Hsieh et al., 2009) reducing abundances of larger individuals which would disproportionately affect length and biomass. These statistics may, therefore, be artificially stabilised by continued fishing efforts. Sustained fishing efforts may bias composition within functional groups toward less commonly targeted species. Multiple wrasse, *Labridae spp.* were more abundant in 2021 than in other years. Most *Labridae* species are less commonly retained by recreational fisherman (Ryan, Lai and Smallwood, 2022), than other demersal taxa such as *Lethrinus miniatus* and *Pagurus auratus* which were more closely associated with 2017 and 2019 respectively. Increased abundances of wrasses may be due to increased resource availability from the removal of larger demersals. A similar phenomenon has been observed in the Caribbean where moray eels have become more abundant in areas where their competitors are suppressed by fishing pressure (Clementi et al., 2021).

Increased fishing pressure can be inferred from the presence of sharks, *Carcharhinidae spp.*, In 2021 with fishing hooks in their mouths. Individuals of two species were observed with at least one hook present. *Carcharhinus obscurus* in pelagic surveys and *Carcharhinus limbatus* in demersal surveys. Although fishing hooks can lead to mortality (Adams et al., 2014), The presence of 3 separate hooks on one individual of *C.limbatus* suggests that long-term health effects are not significant. Hooks could only be observed in close proximity and good water clarity meaning that not all sharks with hooks will have been recorded as such. A small number of fixed hooks may be due to intentional targeting of sharks by recreational fisherman, but more likely is the retention of hooks from depredation on more desirable species. Depredation from sharks occurs on a large percentage of fishing trips along the Gascoyne coast and is more common in areas of greater fishing pressure (Mitchell et al., 2018). We can infer a greater depredation rate and greater fishing pressure in 2021 than in other years due to the presence of large numbers of fixed fish hooks. Greater depredation rates could also be linked to less prey availability in areas of greater fishing pressure. Suppressed populations of demersal and pelagic fishes may be insufficient to support current shark populations, altering shark behaviour to favour the lesser metabolic demands of depredation rather than active predation.

Fishing pressure in 2021 may have increased due to the COVID-19 pandemic. Early reports from 2020 suggested that recreational fishermen were more active during the pandemic (Ryan et al., 2021), and when movement within Western Australia was once again permitted many fishermen travelled from the Perth Metropolitan Area northward to areas such as Shark Bay. Suggestions of an increase in recreational fishing were further supported by anecdotal evidence (WAIFC, 2020; Birch, 2020; Borrello, 2021). Our sample area of Steep Point and Dirk Hartog Island is one of the less accessible areas of Shark Bay with 4 wheel drive only access and no sealed boat ramp. Fishermen targeting demersal species may, therefore, find more accessible areas inside the Denham sound or Eastern Gulf. These areas experience smaller swell and weaker currents than those found West of the Southern Passage and Dirk Hartog Island. Historically consistent removal of larger demersal species may also be a factor in discouraging demersal fishing as abundances of target species are insufficient to justify the comparative inaccessibility of the area. Fishermen targeting pelagic species, however, are incentivised to fish around Steep point and Dirk Hartog. Depth in these areas increases rapidly from the shoreline as compared to the sloping gulfs of Shark Bay requiring less fuel expenditure and travel time to access pelagic habitats. The Leeuwin current is also more prevalent on the Western side of Dirk Hartog (Hetzel, Pattiaratchi and Mihanović, 2018), encouraging greater abundance of pelagic species through higher water temperature (Boyce, Tittensor and Worm, 2008) and consistent nutrient input (Lefébure et al., 2013). Progressive degradation of pelagic communities relative to demersal communities around Steep Point and Dirk Hartog may be due to a strong bias in fishermen toward targeting pelagic species in the area.

The presence of certain taxa in both pelagic and benthic habitats imply movement between the two, providing a mechanism for trophic linkages. Of the 22 taxa observed from both midwater and seabed BRUVs, 8 were whaler sharks of the family *Carchirhinidae*. This group is known to utilise both pelagic and demersal habitats (Rogers et al., 2012; Rogers et al., 2013) and feed on taxa that are unique to either habitat (Simpfendorfer, Goodreid and McAuley, 2001). Utilisation of benthic and pelagic habitats may be structured ontogenetically as juveniles are known spend more time in inshore areas (Knip et al., 2011;

28

Speed et al., 2016), although this may not be true for all species (McAuley et al., 2007). Both regular movement of adults between benthic and pelagic habitats and ontogenetic shifts in habitat preference provide linkages between the two habitats. Benthic-Pelagic linkages arent solely mediated by predatory species. Schools of Carangidae spp. were abundant in both habitat types, likely being predated upon and themselves feeding. Benthic Pelagic trophic linkages are known to be an important mechanism for nutrient transfer between systems (Griffiths et al., 2017). In the case of Shark Bay, nutrient flow between benthic and pelagic habitats would increase ecosystem complexity and redundancy. On the contrary, linkages provide an avenue for disturbance in one habitat to have indirect effects in the other, most likely in the behaviour of species that mediate the linkages. Decreasing pelagic biomass and stable benthic biomass could be encouraging shifts in foraging behaviour of predatory species in Shark Bay. Carcharid shark species were more dominant in pelagic systems during 2017 to 2019 and more dominant in benthic systems during 2021. This could be interpreted as the inshore movement of these sharks in response to insufficient prey biomass in pelagic habitats. Through mechanisms such as these, anthropogenic disturbances of pelagic assemblages may produce increased pressure on benthic food webs and vice-versa.

The occurrence of three juvenile shortfin mako sharks, *Isurus oxyrinchus*, suggests the presence of a nearby parturition site. The three individual sharks were measured to be approximately 57.3cm, 100.4cm and 59.5cm in length. This would suggest that the smaller two were young of the month at <70cm and the larger individual born within the last year (Bustamante and Bennett, 2013). Size at birth for this species is often quoted as between 65-70cm (Stevens, 1983; Joung and Hsu, 2005). The occurrence of two individuals of below 60cm emphasises that these sharks were born extremely recently and in close proximity to the study area. This is consistent with previous research suggesting that Western Australia holds a parturition site for this species (Forrest, 2019). Despite being a highly migratory species (Vaudo et al., 2017), whether the smaller two individuals travelled over 500 kilometres from the proposed parturition site of Perth Canyon is currently unclear. Similar submarine canyons such as the Houtman and Zutydorp canyons closer to the study area may be alternate sources for the exceptionally young juveniles. Although further study on the movements of mature females and juveniles would be required to confirm this hypothesis.

Regardless of their source, the occurrence of multiple juvenile shortfin makos West of Steep Point and Dirk Hartog emphasises the significance of this area to vunerable pelagic species.

The presence of large numbers of wedgefishes, *Rhinidae spp.*, demonstrates the importance of Shark Bay as a habitat for vunerable benthic species. 15 individuals of the critically endangered Rhyncobatus australiae were recorded in 2017 and 2018. Wedgefishes show a strong preference for shallow coastal waters which overlap with coastal fisheries making them vunerable to bycatch (Kyne et al., 2020). Wedgefishes are further endangered by targeted fishing for the international fin trade where their dorsal fins are highly valued. Their abundance in Shark Bay can be partially explained by the presence of large amounts of their preferred shallow, sandy habitat. The remoteness of the Southern Passage and West Dirk Hartog, particularly for commercial fishing operations, limits pressure from bycatch. Although the targeting of wedgefishes by recreational fishermen is permitted in Western Australia, there are broad bag and size limits which make targeting these species for international trade inviable. Notably, this group was only recorded during 2017 and 2018. This disparity could be influenced by minor biases in seabed sampling locations, but more likely is the migration of *R.australiae* in response to temperature. Shark Bay is near the southernmost extent of wedgefish distribution in Western Australia. Individuals may therefore undertake vertical or horizontal migration to remain in optimal thermal ranges similarly to other large demersal species (Boje et al., 2014; Kessel et al., 2014). Interannual variations in sea surface temperature may be a factor in the absence of *Rhinidae spp.* in 2019 and 2021. Increased recreational fishing pressure may also have affected wedgefish abundance but there is currently insufficient catch data on this species in Western Australia. wedgefish populations are significantly declining (Daly et al., 2020) and the group possesses among the greatest extinction risk of all marine fishes (Kyne et al., 2020). The Status of Shark Bay as a refuge for wedgefishes emphasises the need for specific protection measures to ensure the long-term resilience of the Western Australian population.

The El Niño–Southern Oscillation (ENSO) could have affected marine assemblages through variation in the strength of the Leeuwin current and therefore sea-surface temperatures. The Leeuwin current has been shown to be stronger in La Niña years, increasing sea surface temperatures across Western Australia (Pearce and Phillips, 1988; Feng, 2003; Feng, Waite and Thompson, 2009). Both pelagic and benthic wildlife taxa have been shown to react

30

positively to a stronger Leeuwin current. Large filter feeding species such as whale sharks, Rhincodon typus, are more abundant in Western Australia during La Niña years, likely due to increased food availability (Hanson and McKinnon, 2009). The Western Rock Lobster, Panulirus cygnus, also shows an affinity for La Niña years as a stronger Leeuwin current results in higher settlement rates in coastal reefs (Pearce and Phillips, 1988). Climate data from 2017 to 2019 is indicative of an extended El Niño period with greatly above average temperatures (Bureau of Meteorology, 2018, 2019, 2020). 2020 and 2021 show a transition to La Niña conditions (Bureau of Meteorology, 2021, 2022). The assumption of a stronger Leeuwin current in 2020-2021 positively impacting marine assemblages is, however, not concordant with the recorded metrics of biomass, length, and pelagic richness. A significant increase in total abundance from 2019 to 2021 may have been related to a stronger Leeuwin current as schooling fishes respond to extreme temperature anomalies in the Eastern Indian Ocean (Puspasari, Rachmawati and Muawanah, 2019). These taxa respond most dramatically though their spawning effort, with different species having different thermal optima (Hamza, Valsala and Varikoden, 2022). Although any effects on the abundance of these species through the mechanism of spawning won't be observed for 1-3 years following a temperature anomaly. Furthermore, increased abundance accompanied by decreasing biomass would appear paradoxical if the strength of the Leeuwin current were indeed a dominant driver in this case. Environmental effects on marine assemblages in Shark Bay may be highly species specific as in the case of schooling fishes and partially explain interannual shifts in composition. However, species specific data on interactions with the Leeuwin current strength are currently insufficient to lend credibility to climatic factors as the major driver of compositional change.

The Shark Bay World Heritage Area shows clear evidence of human disturbance in its unprotected pelagic habitat. The progressive degradation of pelagic assemblages to favour small abundant taxa suggests that recreational fishing pressure is the primary driver of interannual change around Steep point and West Dirk Hartog Island. This is supported by significant shifts in pelagic community composition that suggest a decrease in the abundance of some larger piscivores. Lack of any specific protections and continually increasing accessibility predicts no sign of respite for these areas. The COVID-19 pandemic seemingly exacerbated this trend with an influx of fishermen from elsewhere in Western Australia supplementing the consistent local fishing effort. Demersal assemblages did not show the same patterns, with more consistent univariate metrics suggesting greater overall stability. The comparative stability of demersal assemblages could be due to the remoteness of West Dirk Hartog and the Zutydorp cliffs discouraging fishing of demersal species which are more easily accessed elsewhere. In the case of more highly desirable species such as snapper, size structure may be artificially truncated by recreational size limits leading to a strong bias toward certain size classes and the appearance of overall stability. Despite consistency in univariate metrics, demersal community composition changed significantly between years. A consistent trend was not entirely clear, although the abundance of less desirable *Labridae* species in more recent years could be due to anthropogenic factors. Either directly by increased fishing pressure on demersal species, or indirectly through a shift in the foraging habits of pelagic piscivores to favour specific demersal prey. Alternatively, The ENSO could be a more major driver of demersal composition, leading to more speciesspecific trends which would be more difficult to identify.

Michaelis-Menten species accumulation curves showed that BRUVs had a high effectiveness at sampling the available species pool. Despite some disparity in the number of deployments between years, the percentage of the species pool that were recorded at least once remained above 78.4% for demersal surveys and 88.9% for pelagic surveys. Some practical limitations of BRUVs remain, however. Small cryptic species were less likely to be recorded, although these taxa generally contribute less to biomass and length totals, so their omission is unlikely to significantly affect overall trends. A number of seabed BRUVs deployments had to be omitted from analysis due to tipping in rough sea conditions. Although still detrimental, the sampling effectiveness for each survey remained high enough to limit any effect the loss of these deployments would've had on the dataset. The practicalities of using photogrammetric methods for length estimates meant than mean lengths or lengths from alternate individuals had to be used in many cases. The realities of video quality and position of fishes mean that this is a necessity for calculating total length and biomass. The majority of examples where this was necessary, however, were in the cases of large schools of individuals with similar body sizes. For these individuals a mean based on a sample of at least 20% of the school is unlikely to differ greatly from the actual size of the fishes.

Especially in proportion to the inaccuracies inherent in using photogrammetric methods in poor visibility.

This project presents many opportunities for further research. Primarily, the reasons for such stability in the demersal communities of Shark Bay is as yet unclear. Use of a greater number of seabed BRUVs across a range of sites in the interior of Shark Bay could give a broader view of how communities change across wider spatial scales. Further, the acquisition of accurate data on recreational fishing activity, particularly around Steep point and Dirk Hartog Island would provide clarity on the extent to which fishing pressure is a driver of demersal assemblages in the West of Shark Bay. As described, species specific data on interannual responses to the relative strength of the Leeuwin current is currently lacking. Long-term datasets on the abundance and movements of several key groups would be instrumental in understanding compositional change in response to large-scale environmental factors. The presence of juvenile shortfin mako sharks warrants further study. Given the extremely small size of these individuals, a nearby parturition site is likely. Recently developed birth alert tags (BATs) (Sulikowski and Hammerschlag, 2023) could be utilised on large pregnant mako sharks to determine the exact timing and location of the parturition site. Although this presents its own logistical challenges.

the lack of formal protections for all pelagic and most demersal habitats exposes the study area to the risks of increased accessibility. Pelagic habitats show evidence of community wide effects from excessive fishing pressure and would benefit from the management consideration alongside the interior gulfs of Shark Bay. Furthermore, the strong presence of vunerable species such as wedgefishes and a juvenile shortfin mako sharks emphasises the need for species-specific protections to solidify The Shark Bay World Heritage Area as a refuge for these species. In accordance with Australia's commitment to the 30 by 30 biodiversity agreement, West Dirk Hartog Island down to the Zutydorp cliffs stands as a strong and necessary candidate for legislative protections to ensure the long-term stability and recovery of its marine communities.

#### References

Adams, D.H., Borucinska, J.D., Maillett, K., Whitburn, K. and Sander, T.E. (2014). Mortality due to a retained circle hook in a longfin mako shark Isurus paucus (Guitart-Manday). *Journal of Fish Diseases*, 38(7), pp.621–628. doi:https://doi.org/10.1111/jfd.12277.

Anson, J.R., Dickman, C.R., Boonstra, R. and Jessop, T.S. (2013). Stress Triangle: Do Introduced Predators Exert Indirect Costs on Native Predators and Prey? *PLoS ONE*, 8(4), p.e60916. doi:https://doi.org/10.1371/journal.pone.0060916.

Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA), in Wiley StatsRef: Statistics Reference Online (Chichester, UK: John Wiley & Sons, Ltd), 1–15. doi:10.1002/9781118445112.stat07841.

Bureau of Meteorology, Australian Government (2018). *Annual climate statement 2017*. [online] Bom.gov.au. Available at: http://www.bom.gov.au/climate/current/annual/aus/2017/.

Bureau of Meteorology, Australian Government (2019). *Annual Australian Climate Statement 2018*. [online] www.bom.gov.au. Available at: http://www.bom.gov.au/climate/current/annual/aus/2018/.

Bureau of Meteorology, Australian Government (2020). *Annual Australian Climate Statement 2019*. [online] www.bom.gov.au. Available at: http://www.bom.gov.au/climate/current/annual/aus/2019/.

Bureau of Meteorology, Australian Government (2021). *Annual climate statement 2020*. [online] Bom.gov.au. Available at: http://www.bom.gov.au/climate/current/annual/aus/2020/.

Bureau of Meteorology, Australian Government (2022). *Annual Statement 2021*. [online] Bom.gov.au. Available at: http://www.bom.gov.au/climate/current/annual/aus/2021/.

Benoit-Bird, K.J. and Au, W.W.L. (2003). Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. *Behavioral Ecology and Sociobiology*, 53(6), pp.364–373. doi:https://doi.org/10.1007/s00265-003-0585-4.

Birch, L. (2020). 'Wheelie bins of waste': Shark Bay tourists 'taking too many fish'. [online] www.abc.net.au. Available at: https://www.abc.net.au/news/2020-09-02/overfishing-at-shark-bay-western-australia/12611964.

Boje, J., Neuenfeldt, S., Sparrevohn, C., Eigaard, O. and Behrens, J. (2014). Seasonal migration, vertical activity, and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides in West Greenland waters. *Marine Ecology Progress Series*, 508, pp.211–222. doi:https://doi.org/10.3354/meps10874.

Borrello, eliza (2021). For fishers, pink snapper are jewels of the ocean. But there are fears COVID-19 is making them too rare. *ABC News*. [online] 14 Aug. Available at: https://www.abc.net.au/news/rural/2021-08-14/fears-covid-19-is-making-pink-snapper-too-rare/100369750 [Accessed 26 Jun. 2023].

Boyce, D., Tittensor, D. and Worm, B. (2008). Effects of temperature on global patterns of tuna and billfish richness. *Marine Ecology Progress Series*, 355, pp.267–276. doi:https://doi.org/10.3354/meps07237.

Boyd, C., Mathieu Woillez, Bertrand, S., Castillo, R., Bertrand A and Punt, A.E. (2015). Bayesian posterior prediction of the patchy spatial distributions of small pelagic fish in regions of suitable habitat. *Canadian Journal of Fisheries and Aquatic Sciences*, 72(2), pp.290–303. doi:https://doi.org/10.1139/cjfas-2014-0234.

Bustamante, C. and Bennett, M.B. (2013). Insights into the reproductive biology and fisheries of two commercially exploited species, shortfin mako (Isurus oxyrinchus) and blue shark (Prionace glauca), in the south-east Pacific Ocean. *Fisheries Research*, 143, pp.174–183. doi:https://doi.org/10.1016/j.fishres.2013.02.007.

Cappo, M., Harvey, E.S. and Shortis, M.R. (2007). Counting and measuring fish with baited video techniques - an overview. *Australian Society for Fish Biology*.

Caputi, N., Fletcher, W., Pearce, A. and Chubb, C. (1996). Effect of the Leeuwin Current on the Recruitment of Fish and Invertebrates along the Western Australian Coast. *Marine and Freshwater Research*, 47(2), p.147. doi:https://doi.org/10.1071/mf9960147.

Christensen, J. and Jackson, G.L. (2014). Shark Bay Snapper: Science, Policy, and the Decline and Recovery of a Marine Recreational Fishery. *Historical Perspectives of Fisheries Exploitation in the Indo-Pacific*, 12, pp.251–268. doi:https://doi.org/10.1007/978-94-017-8727-7\_13.

Christensen, J. and Jones, R. (2020). World Heritage and local change: Conflict, transformation and scale at Shark Bay, Western Australia. *Journal of Rural Studies*, 74, pp.235–243. doi:https://doi.org/10.1016/j.jrurstud.2019.11.017.

Clementi, G.M., Bakker, J., Flowers, K.I., Postaire, B.D., Babcock, E.A., Bond, M.E., Buddo, D., Cardeñosa, D., Currey-Randall, L.M., Goetze, J.S., Harvey, E.S., Heupel, M., Kiszka, J.J., Kyne, F., MacNeil, M.A., Meekan, M.G., Rees, M.J., Simpfendorfer, C.A., Speed, C.W. and Heithaus, M.R. (2021). Moray eels are more common on coral reefs subject to higher human pressure in the greater Caribbean. *iScience*, [online] 24(3), p.102097. doi:https://doi.org/10.1016/j.isci.2021.102097.

Constanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R., Paruelo, J., Raskin, R., Sutton, P. and van den Belt, M. (1997). The value of the world's ecosystem services and natural capital . *Nature*, 387, pp.253–260. doi:https://doi.org/10.1038/387253a0.

Daly, R.C., Parker, D., Cliff, G., Jordaan, G.L., Nkabi Nomfundo, Bennett, R.H. and Mann, B.L. (2020). Long-term catch trends and risk assessment of the Critically Endangered white-spotted wedgefish (*Rhynchobatus djiddensis*) from South Africa. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 31(4), pp.777–788. doi:https://doi.org/10.1002/aqc.3483.

Dinerstein, E., Vynne, C., Sala, E., Joshi, A.R., Fernando, S., Lovejoy, T.E., Mayorga, J., Olson, D., Asner, G.P., Baillie, J.E.M., Burgess, N.D., Burkart, K., Noss, R.F., Zhang, Y.P., Baccini, A., Birch, T., Hahn, N., Joppa, L.N. and Wikramanayake, E. (2019). A Global Deal For Nature: Guiding principles, milestones, and targets. *Science Advances*, [online] 5(4), p.eaaw2869. doi:https://doi.org/10.1126/sciadv.aaw2869.

Dulvy, N.K., Polunin, N.V., Mill, A.C. and Graham, N.A. (2004). Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. *Canadian Journal of Fisheries and Aquatic Sciences*, 61(3), pp.466–475. doi:https://doi.org/10.1139/f03-169.

Fairclough, D., Ayvazian, S. and Newman, S. (2022). Complementary evidence for small-scale spatial assemblages of the exploited grass emperor (Lethrinus laticaudis) in the Shark Bay World Heritage Area, Western Australia. *Marine Environmental Research*, 173. doi:https://doi.org/10.1016/j.marenvres.2021.105543.

Fairclough, D.V. (2021). 2021 assessment of the status of the West Coast Demersal Scalefish resource. Perth, WA, WA: Department of Primary Industries and Regional Development.

Feng, M. (2003). Annual and interannual variations of the Leeuwin Current at 32°S. *Journal of Geophysical Research*, 108(C11). doi:https://doi.org/10.1029/2002jc001763.

Feng, M., Waite, A. and Thompson, P. (2009). Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. *Journal of the Royal Society of Western Australia*, 92, pp.67–81.

Ferrier-Pages, C., Witting, J., Tambutte, E. and Sebens, K.P. (2003). Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. *Coral Reefs*, 22(3), pp.229–240. doi:https://doi.org/10.1007/s00338-003-0312-7.

Field, C.B. (1998). Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. *Science*, 281(5374), pp.237–240. doi:https://doi.org/10.1126/science.281.5374.237.

Forrest, A. (2019). Pelagic Ecology and Solutions For a Troubled Ocean, PhD Thesis [Unpublished]. University of Western Australia. Available at: https://doi.org/10.26182/5df9bd625f2a1

Froese, R., and Pauly, D. (2019). FishBase. FishBase. Available at: www.fishbase.org.

Gilby, B.L., Tibbetts, I.R. and Stevens, T. (2017). Low functional redundancy and high variability in Sargassum browsing fish populations in a subtropical reef system. *Marine and Freshwater Research*, 68(2), p.331. doi:https://doi.org/10.1071/mf15386.

Gjerde, K.M., Harden-Davies, H. and Hassanali, K. (2022). High seas treaty within reach. *Science*, 377(6612), pp.1241–1241. doi:https://doi.org/10.1126/science.ade8437.

Green, D.B., Bestley, S., Rowan Trebilco, Corney, S., Lehodey, P., McMahon, C., Christophe Guinet and Hindell, M.A. (2020). Modelled mid-trophic pelagic prey fields improve understanding of marine predator foraging behaviour. *Ecograpahy*, 43(7), pp.1014–1026. doi:https://doi.org/10.1111/ecog.04939. Griffiths, J.R., Kadin, M., Nascimento, F.J.A., Tamelander, T., Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M., Nordström, M.C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R., Blenckner, T., Niiranen, S. and Winder, M. (2017). The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. *Global Change Biology*, 23(6), pp.2179–2196. doi:https://doi.org/10.1111/gcb.13642.

Hamza, F., Valsala, V. and Varikoden, H. (2022). The puzzle of the anchovy–sardine inverse fishery at the southeastern coast of the Arabian Sea and climate variability. *Fish and Fisheries*, 23(5), pp.1025–1038. doi:https://doi.org/10.1111/faf.12667.

Hanson, C. and McKinnon, A. (2009). Pelagic ecology of the Ningaloo region, Western Australia: influence of the Leeuwin Current. *Journal of the Royal Society of Western Australia*, 92, pp.129–137.

Harvey, E. and Shortis, M. (1995). A System for Stereo-Video Measurement of Sub-Tidal Organisms. *Marine Technology Society Journal*, 29.

Heithaus, M.R., Wirsing, A.J., Dill, L.M. and Heithaus, L.I. (2007). Long-term movements of tiger sharks satellitetagged in Shark Bay, Western Australia. *Marine Biology*, 151(4), pp.1455–1461. doi:https://doi.org/10.1007/s00227-006-0583-y.

Hetzel, Y., Pattiaratchi, C. and Mihanović, H. (2018). Exchange Flow Variability between Hypersaline Shark Bay and the Ocean. *Journal of Marine Science and Engineering*, 6(2), p.65. doi:https://doi.org/10.3390/jmse6020065.

Hetzel, Y., Pattiaratchi, C. and Lowe, R. (2013). Intermittent dense water outflows under variable tidal forcing in Shark Bay, Western Australia. *Continental Shelf Research*, 66, pp. 36–48. Available at: https://doi.org/10.1016/j.csr.2013.06.015.

Hetzel, Y., Pattiarachti, C. and Lowe, R. (2015). Wind and tidal mixing controls on stratification and dense water outflows in a large Hypersaline Bay. *Journal of Geophysical Research: Oceans*, 120(9), pp. 6034–6056. Available at: https://doi.org/10.1002/2015jc010733.

Hoey, A.S. and Bellwood, D.R. (2009). Limited Functional Redundancy in a High Diversity System: Single Species Dominates Key Ecological Process on Coral Reefs. *Ecosystems*, 12(8), pp.1316–1328. doi:https://doi.org/10.1007/s10021-009-9291-z.

Hsieh, C., Yamauchi, A., Nakazawa, T. and Wang, W.-F. (2009). Fishing effects on age and spatial structures undermine population stability of fishes. *Aquatic Sciences*, 72(2), pp.165–178. doi:https://doi.org/10.1007/s00027-009-0122-2.

Jacob, U., Thierry, A., Brose, U., Arntz, W., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Möllmann, C., Petchy, O., Riede, J. and Dunne, J. (2011). The Role of Body Size in Complex Food Webs: A Cold Case. *Advances in Ecological Research*, 45, pp.181–223. doi:https://doi.org/10.1016/B978-0-12-386475-8.00005-8.

Joung, S.-J. and Hsu, H.-H. (2005). Reproduction and Embryonic Development of the Shortfin Mako, Isurus oxyrinchus in the Northwestern Pacific. *Zoological Studies Taipei*, 44(4), pp.487–496.

Kessel, S., Chapman, D., Franks, B., Gedamke, T., Gruber, S., Newman, J., White, E. and Perkins, R. (2014). Predictable temperature-regulated residency, movement and migration in a large, highly mobile marine predator (Negaprion brevirostris). *Marine Ecology Progress Series*, 514, pp.175–190. doi:https://doi.org/10.3354/meps10966.

Kirby, R., Beaugrand, G., Lindley, J., Richardson, A., Edwards, M. and Reid, P. (2007). Climate effects and benthic pelagic coupling in the North Sea. *Marine Ecology Progress Series*, 330, pp.31–38. doi:https://doi.org/10.3354/meps330031.

Knip, D., Heupel, M., Simpfendorfer, C., Tobin, A. and Moloney, J. (2011). Ontogenetic shifts in movement and habitat use of juvenile pigeye sharks Carcharhinus amboinensis in a tropical nearshore region. *Marine Ecology Progress Series*, 425, pp.233–246. doi:https://doi.org/10.3354/meps09006.

Koslow, J.A., Pesant, S., Feng, M., Pearce, A., Fearns, P., Moore, T., Matear, R. and Waite, A. (2008). The effect of the Leeuwin Current on phytoplankton biomass and production off Southwestern Australia. *Journal of Geophysical Research*, 113(C7). doi:https://doi.org/10.1029/2007jc004102.

Kyne, P.M., Jabado, R.W., Rigby, C.L., Dharmadi, Gore, M.A., Pollock, C.M., Herman, K.B., Cheok, J., Ebert, D.A., Simpfendorfer, C.A. and Dulvy, N.K. (2020). The thin edge of the wedge: Extremely high extinction risk in wedgefishes and giant guitarfishes. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 30(7). doi:https://doi.org/10.1002/aqc.3331.

Lefébure, R., Degerman, R., Andersson, A., Larsson, S., Eriksson, L-O., Båmstedt, U. and Byström, P. (2013). Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. *Global Change Biology*, 19(5), pp.1358–1372. doi:https://doi.org/10.1111/gcb.12134.

Lesser, M.P. (2006). Benthic–pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. *Journal of Experimental Marine Biology and Ecology*, 328(2), pp.277–288. doi:https://doi.org/10.1016/j.jembe.2005.07.010.

Marcus, N.H. and Marcus, N.H. (1998). Minireview: The importance of benthic-pelagic coupling and the forgotten role of life cycles in coastal aquatic systems. *Limnology and Oceanography*, 43(5), pp.763–768. doi:https://doi.org/10.4319/lo.1998.43.5.0763.

McAuley, R.B., Simpfendorfer, C.A., Hyndes, G.A. and Lenanton, R.C.J. (2007). Distribution and reproductive biology of the sandbar shark, Carcharhinus plumbeus (Nardo), in Western Australian waters. *Marine and Freshwater Research*, 58(1), p.116. doi:https://doi.org/10.1071/mf05234.

Mitchell, J., McLean, D., Collin, S., Taylor, S., Jackson, G., Fisher, R. and Langlois, T. (2018). Quantifying shark depredation in a recreational fishery in the Ningaloo Marine Park and Exmouth Gulf, Western Australia. *Marine Ecology Progress Series*, [online] 587, pp.141–157. doi:https://doi.org/10.3354/meps12412.

Mitchell, M.D. and Harborne, A.R. (2020). Non-consumptive effects in fish predator–prey interactions on coral reefs. *Coral Reefs*, 39. doi:https://doi.org/10.1007/s00338-020-01920-y.

Moland Olsen, E., Lilly, G.R., Heino, M., Joanne Morgan, M., Brattey, J. and Dieckmann, U. (2005). Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). *Canadian Journal of Fisheries and Aquatic Sciences*, 62(4). doi:https://doi.org/10.1139/f05-065.

Moore, A. (2017). Are guitarfishes the next sawfishes? Extinction risk and an urgent call for conservation action. *Endangered Species Research*, 34, pp.75–88. doi:https://doi.org/10.3354/esr00830.

Nahas, E.L., Jackson, G., Pattiaratchi, C. and Ivey, G. (2003). Hydrodynamic modelling of Snapper Pagrus auratus egg and larval dispersal in Shark Bay, Western Australia: Reproductive isolation at a fine spatial scale. *Marine Ecology Progress Series*, 265, pp. 213–226. Available at: https://doi.org/10.3354/meps265213.

Naumann, M., Richter, C., el-Zibdah, M. and Wild, C. (2009). Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. *Marine Ecology Progress Series*, 385, pp.65–76. doi:https://doi.org/10.3354/meps08073.

O'Leary, B.C., Winther-Janson, M., Bainbridge, J.M., Aitken, J., Hawkins, J.P. and Roberts, C.M. (2016). Effective Coverage Targets for Ocean Protection. *Conservation Letters*, 9(6), pp.398–404. doi:https://doi.org/10.1111/conl.12247.

Ohshimo, S., Tanaka, H., Nishiuchi, K. and Yasuda, T. (2016). Trophic positions and predator–prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan. *Marine and Freshwater Research*, 67(11), p.1692. doi:https://doi.org/10.1071/mf15115.

Palomares, M. L. D., and Pauly, D. (2019). SeaLifeBase. SeaLifeBase. Available at: www.sealifebase.org

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres , F. (1998). Fishing Down Marine Food Webs. *Science*, 279(5352), pp.860–863. doi:https://doi.org/10.1126/science.279.5352.860.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R. and Zeller, D. (2002). Towards sustainability in world fisheries. *Nature*, [online] 418(6898), pp.689–695. doi:https://doi.org/10.1038/nature01017.

Pearce, A.F. and Phillips, B.F. (1988). ENSO events, the Leeuwin Current, and larval recruitment of the western rock lobster. *ICES Journal of Marine Science*, 45(1), pp.13–21. doi:https://doi.org/10.1093/icesjms/45.1.13.

Phillips, J. and Huisman, J. (2009). Influence of the Leeuwin Current on the marine flora of the Houtman Abrolhos. *Journal of the Royal Society of Western Australia*, 92(2), pp.139–146.

Pile, A.J. and Young, C.M. (2006). The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deepsea microbial food web. *Deep Sea Research Part I: Oceanographic Research Papers*, 53(7), pp.1148–1156. doi:https://doi.org/10.1016/j.dsr.2006.03.008. Porter, E., Cornwell, J. and Sanford, L. (2004). Effect of oysters Crassostrea virginica and bottom shear velocity on benthic-pelagic coupling and estuarine water quality. *Marine Ecology Progress Series*, 271, pp.61–75. doi:https://doi.org/10.3354/meps271061.

Preciado, I., Velasco, F. and Olaso, I. (2008). The role of pelagic fish as forage for the demersal fish community in the southern Bay of Biscay. *Journal of Marine Systems*, 72(1-4), pp.407–417. doi:https://doi.org/10.1016/j.jmarsys.2007.04.007.

Puspasari, R., Rachmawati, P.F. and Muawanah, U. (2019). Climate variability impact on Bali sardine fishery: Ecology and fisheries perspective. *Fisheries Management and Ecology*, 26(6), pp.540–547. doi:https://doi.org/10.1111/fme.12374.

Rajesh, K.M., Rohit, P., Thomas, S., Suprabha, V., Nataraja, G.D. and Sampathkumar, G. (2017). Food and feeding habits of the narrow barred Spanish mackerel, Scomberomorus commerson (Lacepede, 1800) off Karnataka, south-west coast of India. *Indian Journal of Fisheries*, 64. doi:https://doi.org/10.21077/ijf.2017.64.specialissue.76262-26.

Ricci, P., Carlucci, R., Capezzuto, F., Carluccio, A., Cipriano, G., Gianfranco D'Onghia, Maiorano, P., Sion, L., Tursi, A. and Libralato, S. (2022). Contribution of Intermediate and High Trophic Level Species to Benthic-Pelagic Coupling: Insights From Modelling Analysis. *Frontiers in Marine Science*, 9. doi:https://doi.org/10.3389/fmars.2022.887464.

Roff, G., Brown, C.J., Priest, M.A. and Mumby, P.J. (2018). Decline of coastal apex shark populations over the past half century. *Communications Biology*, [online] 1(1). doi:https://doi.org/10.1038/s42003-018-0233-1.

Rogers, P.J., Huveneers, C., Goldsworthy, S.D., Cheung, W.W.L., Jones, G.K., Mitchell, J.G. and Seuront, L. (2013). Population metrics and movement of two sympatric carcharhinids: a comparison of the vulnerability of pelagic sharks of the southern Australian gulfs and shelves. *Marine and Freshwater Research*, 64(1), p.20. doi:https://doi.org/10.1071/mf11234.

Rogers, P.J., Huveneers, C., Goldsworthy, S.D., Mitchell, J.G. and Seuront, L. (2012). Broad-scale movements and pelagic habitat of the dusky shark Carcharhinus obscurus off Southern Australia determined using pop-up satellite archival tags. *Fisheries Oceanography*, 22(2), pp.102–112. doi:https://doi.org/10.1111/fog.12009.

Rudolf, V.H.W., Rasmussen, N.L., Dibble, C.J. and Van Allen, B.G. (2014). Resolving the roles of body size and species identity in driving functional diversity. *Proceedings of the Royal Society B: Biological Sciences*, 281(1781), p.20133203. doi:https://doi.org/10.1098/rspb.2013.3203.

Ruppert, J.L.W., Travers, M.J., Smith, L.L., Fortin, M.-J. and Meekan, M.G. (2013). Caught in the Middle: Combined Impacts of Shark Removal and Coral Loss on the Fish Communities of Coral Reefs. *PLoS ONE*, 8(9), p.e74648. doi:https://doi.org/10.1371/journal.pone.0074648. Ryan, K.L., Desfosses, C.J., Denham, A.M., Taylor, S.M. and Jackson, G. (2021). Initial insights on the impact of COVID-19 on boat-based recreational fishing in Western Australia. *Marine Policy*, 132, p.104646. doi:https://doi.org/10.1016/j.marpol.2021.104646.

Ryan, K.L., Lai, E.K.M. and Smallwood, C.B. (2022). *Boat-based recreational fishing in Western Australia* 2020/21. [online] Available at: https://www.fish.wa.gov.au/Documents/research\_reports/frr327.pdf [Accessed 29 May 2023].

Santana-Garcon, J., Newman, S.J. and Harvey, E.S. (2014). Development and validation of a mid-water baited stereo-video technique for investigating pelagic fish assemblages. *Journal of Experimental Marine Biology and Ecology*, 452, pp.82–90. doi:https://doi.org/10.1016/j.jembe.2013.12.009.

SeaGIS Pty Ltd (2006a). CAL. Available at: www.seagis.com.au

SeaGIS Pty Ltd (2006b). EventMeasure. Available at: <u>www.seagis.com.au</u>

Simpfendorfer, C.A., Goodreid, A. and McAuley, R.B. (2001). Diet of three commercially important shark species from Western Australian waters. *Marine and Freshwater Research*, 52(7), p.975. doi:https://doi.org/10.1071/mf01017.

Simpfendorfer, C.A., Heithaus, M.R., Heupel, M.R., M. Aaron MacNeil, Meekan, M.G., Harvey, E.S., C. Samantha Sherman, Currey-Randall, L.M., Goetze, J., Kiszka, J.J., Rees, M.J., Speed, C.W., Vinay Udyawer, Bond, M.E., Flowers, K.I., Clementi, G.M., Valentin-Albanese, J., Adam, M., Ali, K. and Asher, J. (2023). Widespread diversity deficits of coral reef sharks and rays. *Science*, 380(6650), pp.1155–1160. doi:https://doi.org/10.1126/science.ade4884.

Small, A., Adey, W.H. and Spoon, D. (1998). Are current estimates of coral reef biodiversity too low? The view through the window of a microcosm. *Atoll Research Bulletin*, 458, pp.1–20. doi:https://doi.org/10.5479/si.00775630.458.1.

Speed, C.W., Meekan, M.G., Field, I.C., McMahon, C.R., Harcourt, R.G., Stevens, J.D., Babcock, R.C., Pillans, R.D. and Bradshaw, C.J.A. (2016). Reef shark movements relative to a coastal marine protected area. *Regional Studies in Marine Science*, 3, pp.58–66. doi:https://doi.org/10.1016/j.rsma.2015.05.002.

Stevens, J.D. (1983). Observations on Reproduction in the Shortfin Mako Isurus oxyrinchus. *Copeia*, 1983(1), p.126. doi:https://doi.org/10.2307/1444706.

Sulikowski, J.A. and Hammerschlag, N. (2023). A novel intrauterine satellite transmitter to identify parturition in large sharks. *Science Advances*, 9(9). doi:https://doi.org/10.1126/sciadv.add6340.

Thompson, C.D.H., Meeuwig, J.J., Brown, J., Richardson, A.J., Friedlander, A.M., Miller, P.I. and Weber, S.B. (2021). Spatial Variation in Pelagic Wildlife Assemblages in the Ascension Island Marine Protected Area: Implications for Monitoring and Management. *Frontiers in Marine Science*, 8. doi:https://doi.org/10.3389/fmars.2021.634599. Torres-Rojas, Y.E., Hernández-Herrera, A., Galván-Magaña, F. and Alatorre-Ramírez, V.G. (2009). Stomach content analysis of juvenile, scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlán, Mexico. *Aquatic Ecology*, 44(1), pp.301–308. doi:https://doi.org/10.1007/s10452-009-9245-8.

Tourism WA (2022). *Power BI Desktop Overnight Visitor Factsheet 2021 Prepared by Tourism WA Insights and Planning Shire of Shark Bay.* [online] Available at:

https://www.tourism.wa.gov.au/Publications%20Library/Markets%20and%20research/2021/LGA%20Factsheet s/LGA%20Visitor%20Factsheet%202021%20-%20Shark%20Bay.pdf [Accessed 29 Jun. 2023].

Vaudo, J.J., Byrne, M.E., Wetherbee, B.M., Harvey, G.M. and Shivji, M.S. (2017). Long-term satellite tracking reveals region-specific movements of a large pelagic predator, the shortfin mako shark, in the western North Atlantic Ocean. *Journal of Applied Ecology*, 54(6), pp.1765–1775. doi:https://doi.org/10.1111/1365-2664.12852.

WAIFC (2020). Greater monitoring of recreational fishing needed to protect the environment - WAFIC. [online] WAFIC - WA Fishing Industry Council. Available at: https://www.wafic.org.au/news/greater-monitoringrecreational-fishing-needed-protect-environment/ [Accessed 26 Jun. 2023].

Waite, A.M., Thompson, P.D., Pesant, S., Feng, M., Beckley, L.E., Domingues, C.M., Gaughan, D.J., Hanson, C.E., Holl, C.M., Koslow, T., Meuleners, M., Montoya, J., Moore, T.B., Muhling, B.A., Paterson, H., Rennie, S., Strzelecki, J. and Twomey, L. (2007). The Leeuwin Current and its eddies: An introductory overview. *Deep-sea Research Part li-topical Studies in Oceanography*, 54(8-10), pp.789–796. doi:https://doi.org/10.1016/j.dsr2.2006.12.008.

Xilisoft Corporation (2016). Xilisoft Video Converter Ultimate. Available at: www.xilisoft.com

Watson, D. and Harvey, E. (2009). Influence of the Leeuwin Current on the distribution of fishes and the composition of fish assemblages. *Journal of the Royal Society of Western Australia*, 92, pp.147–154.

# Appendices

**Appendix Table 1a.** Complete metadata for seabed BRUVs surveys in Shark Bay from 2017,2018,2019 and 2021. Date is in DD/MM/YYYY format. Latitude and longitude are in degrees. Time is in 24 hour format.

| ID<br>60017_001        | Expedition                       | 15 /00 /2017 | 26 2607              | 112 25 41 | Time In        | Time Out    | Depth (m) |
|------------------------|----------------------------------|--------------|----------------------|-----------|----------------|-------------|-----------|
| SBB17_001              | Shark Bay 2017                   | 15/09/2017   | -26.2718             | 113.2541  | 08:32          | 09:30       | 32        |
| SBB17 003              | Shark Bay 2017                   | 15/09/2017   | -26.2746             | 113.2574  | 08:40          | 09:40       | 33        |
| SBB17_004              | Shark Bay 2017                   | 15/09/2017   | -26.2767             | 113.2592  | 08:45          | 09:40       | 29        |
| SBB17_005              | Shark Bay 2017                   | 15/09/2017   | -26.2786             | 113.2612  | 08:59          | 10:00       | 28        |
| SBB17_006              | Shark Bay 2017                   | 15/09/2017   | -26.2815             | 113.2631  | 10:39          | 11:45       | 28        |
| SBB17_007              | Shark Bay 2017                   | 15/09/2017   | -20.264              | 113 2677  | 10:42          | 11.50       | 20        |
| SBB17_009              | Shark Bay 2017                   | 15/09/2017   | -26.292              | 113.2711  | 10:49          | 11:57       | 26        |
| SBB17_010              | Shark Bay 2017                   | 15/09/2017   | -26.2921             | 113.2711  | 11:03          | 12:10       | 25        |
| SBB17_012              | Shark Bay 2017                   | 16/09/2017   | -26.1606             | 113.1623  | 07:20          | 08:23       | 33        |
| SBB17_013              | Shark Bay 2017                   | 16/09/2017   | -26.1627             | 113.1646  | 07:22          | 08:26       | 33        |
| SBB17_014              | Shark Bay 2017                   | 16/09/2017   | -26.1676             | 113.1674  | 07:24          | 08:31       | 35        |
| SBB17_016              | Shark Bay 2017                   | 16/09/2017   | -26.1703             | 113.1688  | 08:40          | 09:00       | 34        |
| SBB17_017              | Shark Bay 2017                   | 16/09/2017   | -26.1723             | 113.17    | 08:43          | 09:04       | 33        |
| SBB17_020              | Shark Bay 2017                   | 16/09/2017   | -26.1797             | 113.1748  | 08:53          | 09:14       | 29        |
| SBB17_021              | Shark Bay 2017                   | 16/09/2017   | -26.0763             | 113.1601  | 11:41          | 12:40       | 19        |
| SBB17_025              | Shark Bay 2017                   | 16/09/2017   | -26.0649             | 113.1569  | 11:49          | 13:04       | 21        |
| SBB17_026              | Shark Bay 2017                   | 16/09/2017   | -26.0499             | 113.1498  | 13:06          | 14:20       | 18        |
| SBB17_027              | Shark Bay 2017                   | 16/09/2017   | -26.0472             | 113.1483  | 13:09          | 14:24       | 19        |
| SBB17_011<br>SBB17_018 | Shark Bay 2017<br>Shark Bay 2017 | 16/09/2017   | -26.1593             | 113.1607  | 07:17          | 08:20       | 37        |
| SBB17_019              | Shark Bay 2017<br>Shark Bay 2017 | 16/09/2017   | -26.1773             | 113.1734  | 08:50          | 09:10       | 28        |
| SBB17_023              | Shark Bay 2017                   | 16/09/2017   | -26.0711             | 113.1592  | 11:44          | 12:56       | 22        |
| SBB17_024              | Shark Bay 2017                   | 16/09/2017   | -26.0679             | 113.1578  | 11:46          | 13:00       | 22        |
| SBB17_028<br>SBB17_029 | Shark Bay 2017<br>Shark Bay 2017 | 16/09/2017   | -26.0447             | 113.1468  | 13:12          | 14:27       | 20        |
| SBB17_030              | Shark Bay 2017                   | 16/09/2017   | -26.0391             | 113.1432  | 13:17          | 14:33       | 21        |
| SBB17_031              | Shark Bay 2017                   | 20/09/2017   | -25.9217             | 113.037   | 07:40          | 08:43       | 29        |
| SBB17_032              | Shark Bay 2017                   | 20/09/2017   | -25.9182             | 113.036   | 07:44          | 08:46       | 28        |
| SBB17_035              | Shark Bay 2017                   | 20/09/2017   | -25.9149             | 113.0335  | 07:50          | 08:52       | 20        |
| SBB17_035              | Shark Bay 2017                   | 20/09/2017   | -25.9094             | 113.0317  | 07:53          | 08:56       | 27        |
| SBB17_036              | Shark Bay 2017                   | 20/09/2017   | -25.9786             | 113.0853  | 10:27          | 10:35       | 29        |
| SBB17_037              | Shark Bay 2017                   | 20/09/2017   | -25.9759             | 113.0826  | 10:31          | 10:38       | 28        |
| SBB17_038<br>SBB17_039 | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017   | -25.9709             | 113.0804  | 10:35          | 10:41       | 28        |
| SBB17_040              | Shark Bay 2017                   | 20/09/2017   | -25.9681             | 113.0758  | 10:40          | 10:46       | 26        |
| SBB18_001              | Shark Bay 2018                   | 04/08/2018   | -26.17               | 113.2041  | 11:41          | 11:43       | 8         |
| SBB18_002              | Shark Bay 2018                   | 04/08/2018   | -26.1677             | 113.2047  | 11:44          | 11:46       | 8         |
| SBB18_005              | Shark Bay 2018<br>Shark Bay 2018 | 04/08/2018   | -26.1654             | 113.2048  | 11:47          | 11:50       | 8         |
| SBB18_005              | Shark Bay 2018                   | 04/08/2018   | -26.1618             | 113.2058  | 11:51          | 11:55       | 9         |
| SBB18_006              | Shark Bay 2018                   | 04/08/2018   | -26.1252             | 113.1875  | 13:20          | 13:22       | 2         |
| SBB18_007              | Shark Bay 2018                   | 04/08/2018   | -26.1274             | 113.1891  | 13:24          | 13:26       | 3         |
| SBB18_009              | Shark Bay 2018                   | 04/08/2018   | -26.1311             | 113.1900  | 13:29          | 13:31       | 4         |
| SBB18_010              | Shark Bay 2018                   | 04/08/2018   | -26.1341             | 113.194   | 13:32          | 13:34       | 4         |
| SBB18_011              | Shark Bay 2018                   | 08/08/2018   | -26.4998             | 113.3835  | 10:35          | 11:35       | 30        |
| SBB18_012              | Shark Bay 2018                   | 08/08/2018   | -26.4968             | 113.3808  | 10:39          | 11:39       | 31        |
| SBB18_015              | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018   | -26.4945             | 113.3784  | 10:44          | 11:44       | 29        |
| SBB18_015              | Shark Bay 2018                   | 08/08/2018   | -26.4792             | 113.369   | 10:58          | 11:59       | 21        |
| SBB18_016              | Shark Bay 2018                   | 08/08/2018   | -26.4558             | 113.3486  | 12:01          | 13:01       | 15        |
| SBB18_017              | Shark Bay 2018                   | 08/08/2018   | -26.4531             | 113.3455  | 12:04          | 13:04       | 16        |
| SBB18_018<br>SBB18_019 | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018   | -26.4493             | 113.3346  | 12:07          | 13:10       | 10        |
| SBB18_020              | Shark Bay 2018                   | 08/08/2018   | -26.4374             | 113.3298  | 12:13          | 13:13       | 15        |
| SBB18_021              | Shark Bay 2018                   | 08/08/2018   | -26.4191             | 113.2993  | 13:28          | 14:28       | 36        |
| SBB18_022              | Shark Bay 2018                   | 08/08/2018   | -26.4141             | 113.299   | 13:33          | 14:33       | 30        |
| SBB18_025              | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018   | -26.4033             | 113.2962  | 13:41          | 14:57       | 20        |
| SBB18_025              | Shark Bay 2018                   | 08/08/2018   | -26.4009             | 113.2947  | 13:44          | 14:44       | 21        |
| SBB18_026              | Shark Bay 2018                   | 08/08/2018   | -26.4011             | 113.2886  | 14:55          | 15:55       | 29        |
| SBB18_027              | Shark Bay 2018                   | 08/08/2018   | -26.3987             | 113.2895  | 14:57          | 15:57       | 25        |
| SBB18_028<br>SBB18_029 | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018   | -26.3933             | 113.2904  | 14.59          | 16:01       | 23        |
| SBB18_030              | Shark Bay 2018                   | 08/08/2018   | -26.3934             | 113.2967  | 15:03          | 16:03       | 20        |
| SBB18_031              | Shark Bay 2018                   | 08/08/2018   | -26.3839             | 113.2841  | 16:18          | 17:20       | 35        |
| SBB18_032              | Shark Bay 2018                   | 08/08/2018   | -26.3806             | 113.2852  | 16:21          | 17:23       | 34        |
| SBB18_034              | Shark Bay 2018                   | 08/08/2018   | -26.3744             | 113.2878  | 16:25          | 17:20       | 29        |
| SBB18_035              | Shark Bay 2018                   | 08/08/2018   | -26.3717             | 113.2897  | 16:29          | 17:32       | 25        |
| SBB18_036              | Shark Bay 2018                   | 11/08/2018   | -26.2374             | 113.2346  | 08:04          | 09:12       | 22        |
| SBB18_037              | Shark Bay 2018                   | 11/08/2018   | -26.2415             | 113.2389  | 08:09          | 09:15       | 19        |
| SBB18_039              | Shark Bay 2018<br>Shark Bay 2018 | 11/08/2018   | -26.2509             | 113.2422  | 08:15          | 09:18       | 23        |
| SBB18_040              | Shark Bay 2018                   | 11/08/2018   | -26.2557             | 113.2496  | 08:21          | 09:24       | 22        |
| SBB18_041              | Shark Bay 2018                   | 11/08/2018   | -26.2082             | 113.2066  | 09:50          | 10:50       | 23        |
| SBB18_042              | Shark Bay 2018                   | 11/08/2018   | -26.2046             | 113.203   | 09:53          | 10:54       | 27        |
| SBB18_045              | Shark Bay 2018<br>Shark Bay 2018 | 11/08/2018   | -26.1995             | 113.1978  | 09:59          | 10.58       | 24        |
| SBB18_045              | Shark Bay 2018                   | 11/08/2018   | -26.1902             | 113.1888  | 10:02          | 11:06       | 19        |
| SBB18_046              | Shark Bay 2018                   | 11/08/2018   | -26.1861             | 113.1827  | 11:27          | 12:28       | 26        |
| SBB18 047              | Shark Bay 2018<br>Shark Bay 2018 | 11/08/2018   | -26.1819<br>-26.1771 | 113.178   | 11:32          | 12:32       | 28        |
| SBB18_049              | Shark Bay 2018                   | 11/08/2018   | -26.174              | 113.1712  | 11:42          | 12:42       | 29        |
| SBB18_050              | Shark Bay 2018                   | 11/08/2018   | -26.1675             | 113.1686  | 11:47          | 12:47       | 35        |
| SBB18_051              | Shark Bay 2018                   | 11/08/2018   | -26.1528             | 113.1545  | 11:52          | 12:52       | 39        |
| SBB18_053              | Shark Bay 2018                   | 11/08/2018   | -26.1465             | 113.1558  | 13:08          | 14:08       | 28        |
| SBB18_054              | Shark Bay 2018                   | 11/08/2018   | -26.1423             | 113.1608  | 13:16          | 14:16       | 17        |
| SBB18_055              | Shark Bay 2018                   | 11/08/2018   | -26.1419             | 113.1661  | 13:20          | 14:20       | 17        |
| SBB18_056              | Shark Bay 2018                   | 12/08/2018   | -26.0474             | 113.1486  | 08:35          | 09:35       | 19        |
| SBB18_058              | Shark Bay 2018                   | 12/08/2018   | -26.0363             | 113.1418  | 08:40          | 09:40       | 21        |
| SBB18_059              | Shark Bay 2018                   | 12/08/2018   | -26.0314             | 113.1392  | 08:50          | 09:50       | 12        |
| SBB18_060              | Shark Bay 2018                   | 12/08/2018   | -26.0289             | 113.1375  | 08:55          | 09:55       | 17        |
| SBB18 067              | Shark Bay 2018<br>Shark Bay 2018 | 12/08/2018   | -26.0285             | 113.1372  | 10:04          | 11:05       | 10        |
| SBB18_063              | Shark Bay 2018                   | 12/08/2018   | -26.0144             | 113.1269  | 10:12          | 11:13       | 10        |
| SBB18_064              | Shark Bay 2018                   | 12/08/2018   | -26.012              | 113.1249  | 10:16          | 11:17       | 8         |
| 58818_065<br>58818_066 | Shark Bay 2018                   | 12/08/2018   | -26.0086             | 113.1219  | 10:20          | 11:21       | 9         |
| SBB18_067              | Shark Bay 2018<br>Shark Bay 2018 | 12/08/2018   | -26.0022             | 113.1189  | 11:33          | 12:33       | 12        |
| SBB18_068              | Shark Bay 2018                   | 12/08/2018   | -25.9979             | 113.1127  | 11:41          | 12:41       | 10        |
| SBB18_069              | Shark Bay 2018                   | 12/08/2018   | -25.9945             | 113.1101  | 11:45          | 12:45       | 10        |
| SBB18_070              | Shark Bay 2018                   | 12/08/2018   | -25.9911             | 113.1079  | 11:49          | 12:49       | 10        |
| SBB18_071              | Shark Bay 2018                   | 12/08/2018   | -25.9837             | 113.1034  | 13:03          | 14:03       | 18        |
| SBB18_073              | Shark Bay 2018                   | 12/08/2018   | -25.9805             | 113.097   | 13:11          | 14:11       | 13        |
| SBB18_074              | Shark Bay 2018                   | 12/08/2018   | -25.9776             | 113.0941  | 13:15          | 14:15       | 13        |
| 38818_075<br>SBB19_001 | Shark Bay 2018<br>Shark Bay 2019 | 12/08/2018   | -25.9729<br>-26.1709 | 113.0895  | 13:19<br>11:05 | 14:19<br>NA | 14        |
| SBB19_002              | Shark Bay 2019                   | 09/09/2019   | -26.169              | 113.2052  | 11:09          | NA          | 7         |
| SBB19_003              | Shark Bay 2019                   | 09/09/2019   | -26.1679             | 113.2028  | 11:12          | NA          | 7         |
| SBB19_004              | Shark Bay 2019                   | 09/09/2019   | -26.166              | 113.2003  | 11:15          | NA          | 7         |
| SBB19 006              | Shark Bay 2019<br>Shark Bay 2019 | 09/09/2019   | -20.1001             | 113.1906  | 12:37          | NA          | 6         |
| SBB19_007              | Shark Bay 2019                   | 09/09/2019   | -26.1425             | 113.1897  | 12:41          | NA          | 6         |
| SBB19_008              | Shark Bay 2019                   | 09/09/2019   | -26.1402             | 113.1864  | 12:45          | NA          | 4         |
| 28B1A <sup>008</sup>   | Snark Bay 2019                   | 09/09/2019   | -26.139              | 113.1835  | 12:50          | NA          | 6         |

| SBB19_010              | Shark Bay 2019                   | 09/09/2019            | -26.1381 | 113.1806 | 12:56 | NA    | 4      |
|------------------------|----------------------------------|-----------------------|----------|----------|-------|-------|--------|
| SBB19_011              | Shark Bay 2019                   | 20/09/2019            | -26.0572 | 113.1531 | 07:39 | NA    | 20     |
| SBB19_012              | Shark Bay 2019<br>Shark Bay 2010 | 20/09/2019            | -26.0518 | 113.151  | 07:44 | NA    | 16     |
| SBB19_013              | Shark Bay 2019                   | 20/09/2019            | -26.0447 | 113.140  | 07:53 | NA    | 18     |
| SBB19 015              | Shark Bay 2019                   | 20/09/2019            | -26.0415 | 113.145  | 07:56 | NA    | 18     |
| SBB19_016              | Shark Bay 2019                   | 20/09/2019            | -26.142  | 113.1636 | 10:06 | NA    | 16     |
| SBB19_017              | Shark Bay 2019                   | 20/09/2019            | -26.1419 | 113.1665 | 10:10 | NA    | 14     |
| SBB19_018              | Shark Bay 2019                   | 20/09/2019            | -26.1407 | 113.169  | 10:14 | NA    | 18     |
| SBB19_019              | Shark Bay 2019                   | 20/09/2019            | -26.1421 | 113.1719 | 10:19 | NA    | 17     |
| SBB19_020              | Shark Bay 2019                   | 20/09/2019            | -26.1409 | 113.1753 | 10:25 | NA    | 12     |
| SBB19_021              | Shark Bay 2019<br>Shark Bay 2010 | 22/09/2019            | -26.1456 | 113.156  | 08:46 | NA    | 24     |
| SBB19_022              | Shark Bay 2019<br>Shark Bay 2019 | 22/09/2019            | -26.1488 | 112 1545 | 08:50 | NA    | 25     |
| SBB19_024              | Shark Bay 2019                   | 22/09/2019            | -26.1545 | 113.1564 | 08:57 | NA    | 29     |
| SBB19 025              | Shark Bay 2019                   | 22/09/2019            | -26.1574 | 113.1599 | 09:03 | NA    | 26     |
| SBB19_026              | Shark Bay 2019                   | 22/09/2019            | -26.1874 | 113.1871 | 10:38 | NA    | 19     |
| SBB19_027              | Shark Bay 2019                   | 22/09/2019            | -26.1903 | 113.1892 | 10:43 | NA    | 20     |
| SBB19_028              | Shark Bay 2019                   | 22/09/2019            | -26.1919 | 113.1924 | 10:46 | NA    | 15     |
| SBB19_029              | Shark Bay 2019                   | 22/09/2019            | -26.1946 | 113.194  | 10:49 | NA    | 18     |
| SBB19_030              | Shark Bay 2019                   | 22/09/2019            | -26.1961 | 113.1967 | 10:52 | NA    | 12     |
| SBB19_031              | Shark Bay 2019                   | 22/09/2019            | -26.2054 | 113.2025 | 12:10 | NA    | 23     |
| SBB19_032              | Shark Bay 2019<br>Shark Bay 2019 | 22/09/2019            | -26.207  | 112 2072 | 12:14 | NA    | 22     |
| SBB19_033              | Shark Bay 2019                   | 22/09/2019            | -26.2115 | 113.2104 | 12:20 | NA    | 18     |
| SBB19 035              | Shark Bay 2019                   | 22/09/2019            | -26.2141 | 113.2121 | 12:23 | NA    | 20     |
| SBB19_036              | Shark Bay 2019                   | 22/09/2019            | -26.2339 | 113.2328 | 14:07 | NA    | 16     |
| SBB19_037              | Shark Bay 2019                   | 22/09/2019            | -26.2364 | 113.2345 | 14:11 | NA    | 17     |
| SBB19_038              | Shark Bay 2019                   | 22/09/2019            | -26.2397 | 113.2371 | 14:15 | NA    | 18     |
| SBB19_039              | Shark Bay 2019                   | 22/09/2019            | -26.242  | 113.2395 | 14:18 | NA    | 17     |
| SBB19_040              | Shark Bay 2019                   | 22/09/2019            | -26.2451 | 113.2418 | 14:27 | NA    | 16     |
| SBB19_041              | Shark Bay 2019<br>Shark Bay 2010 | 25/09/2019            | -26.3193 | 113.2834 | 06:55 | NA    | 19     |
| SBB19_042<br>SBB19_043 | Shark Bay 2019<br>Shark Bay 2019 | 25/09/2019            | -20.3220 | 113 2881 | 07:05 | NΔ    | 16     |
| SBB19_044              | Shark Bay 2019                   | 25/09/2019            | -26.329  | 113.2888 | 07:09 | NA    | 10     |
| SBB19 045              | Shark Bay 2019                   | 25/09/2019            | -26.332  | 113.2885 | 07:11 | NA    | 19     |
| SBB19_046              | Shark Bay 2019                   | 25/09/2019            | -26.345  | 113.294  | 08:17 | NA    | 16     |
| SBB19_047              | Shark Bay 2019                   | 25/09/2019            | -26.3507 | 113.2927 | 08:19 | NA    | 15     |
| SBB19_048              | Shark Bay 2019                   | 25/09/2019            | -26.3532 | 113.2914 | 08:21 | NA    | 19     |
| SBB19_049              | Shark Bay 2019                   | 25/09/2019            | -26.356  | 113.2911 | 08:23 | NA    | 19     |
| SBB19_050              | Shark Bay 2019                   | 25/09/2019            | -26.3591 | 113.2889 | 08:25 | NA    | 27     |
| SBB19_051              | Shark Bay 2019                   | 25/09/2019            | -26.3787 | 113.2931 | 10:29 | NA    | 23     |
| SBB19_052              | Shark Bay 2019<br>Shark Bay 2019 | 25/09/2019            | -26.3813 | 112 2900 | 10:31 | NA    | 25     |
| SBB19_053              | Shark Bay 2019                   | 25/09/2019            | -26 3864 | 113 2858 | 10:35 | NA    | 30     |
| SBB19_055              | Shark Bay 2019                   | 25/09/2019            | -26.3888 | 113.2845 | 10:33 | NA    | 32     |
| SBB19 056              | Shark Bay 2019                   | 25/09/2019            | -26.3951 | 113.2985 | 12:03 | NA    | 14     |
| SBB19_057              | Shark Bay 2019                   | 25/09/2019            | -26.3964 | 113.2966 | 12:05 | NA    | 16     |
| SBB19_058              | Shark Bay 2019                   | 25/09/2019            | -26.3989 | 113.2949 | 12:07 | NA    | 16     |
| SBB19_059              | Shark Bay 2019                   | 25/09/2019            | -26.4015 | 113.2963 | 12:09 | NA    | 16     |
| SBB19_060              | Shark Bay 2019                   | 25/09/2019            | -26.4038 | 113.299  | 12:11 | NA    | 15     |
| SBB19_061              | Shark Bay 2019                   | 25/09/2019            | -26.4089 | 113.3058 | 13:36 | NA    | 13     |
| SBB19_062              | Shark Bay 2019<br>Shark Bay 2019 | 25/09/2019            | -26.4111 | 112 2094 | 13:38 | NA    | 15     |
| SBB19_063              | Shark Bay 2019<br>Shark Bay 2019 | 25/09/2019            | -20.4150 | 113.3084 | 13:40 | NΔ    | 10     |
| SBB19_065              | Shark Bay 2019                   | 25/09/2019            | -26.4186 | 113.3147 | 13:44 | NA    | 10     |
| SBB19 066              | Shark Bay 2019                   | 25/09/2019            | -26.4243 | 113.318  | 15:22 | NA    | 15     |
| SBB19_067              | Shark Bay 2019                   | 25/09/2019            | -26.4261 | 113.3199 | 15:24 | NA    | 15     |
| SBB19_068              | Shark Bay 2019                   | 25/09/2019            | -26.4287 | 113.3228 | 15:26 | NA    | 14     |
| SBB19_069              | Shark Bay 2019                   | 25/09/2019            | -26.4296 | 113.3231 | 15:28 | NA    | 20     |
| SBB19_070              | Shark Bay 2019                   | 25/09/2019            | -26.4333 | 113.3246 | 15:30 | NA    | 19     |
| SBB19_071              | Shark Bay 2019<br>Shark Bay 2010 | 27/09/2019            | -26.0136 | 113.1179 | 06:35 | NA    | 24     |
| SBB19_072              | Shark Bay 2019<br>Shark Bay 2019 | 27/09/2019            | -26.0109 | 112 1140 | 06:39 | NA    | 28     |
| SBB19_073              | Shark Bay 2019<br>Shark Bay 2019 | 27/09/2019            | -20.008  | 113.1149 | 06:46 | NΔ    | 20     |
| SBB19_075              | Shark Bay 2019                   | 27/09/2019            | -26.0027 | 113.1112 | 06:50 | NA    | 24     |
| SBB19 076              | Shark Bay 2019                   | 27/09/2019            | -25.991  | 113.1018 | 08:12 | NA    | 26     |
| SBB19_077              | Shark Bay 2019                   | 27/09/2019            | -25.9884 | 113.1    | 08:16 | NA    | 21     |
| SBB19_078              | Shark Bay 2019                   | 27/09/2019            | -25.9868 | 113.0975 | 08:19 | NA    | 24     |
| SBB19_079              | Shark Bay 2019                   | 27/09/2019            | -25.9848 | 113.0951 | 08:21 | NA    | 23     |
| SBB19_080              | Shark Bay 2019                   | 27/09/2019            | -25.9823 | 113.0915 | 08:24 | NA    | 24     |
| SBB19_081              | Shark Bay 2019                   | 27/09/2019            | -26.1628 | 113.2091 | 11:38 | NA    | 7      |
| SBB19_082              | Shark Bay 2019<br>Shark Bay 2019 | 27/09/2019            | -26.1648 | 112 2124 | 11:40 | NA    | 10     |
| SBB19_085              | Shark Bay 2019<br>Shark Bay 2019 | 27/09/2019            | -26 1633 | 113 2165 | 11.45 | NΔ    | 10     |
| SBB19_085              | Shark Bay 2019                   | 27/09/2019            | -26.1645 | 113,2191 | 11:51 | NA    | 8      |
| SBB21 001              | Shark Bay 2021                   | 28/08/2021            | -26.149  | 113.1557 | 07:56 | 09:04 | 19     |
| SBB21_002              | Shark Bay 2021                   | 28/08/2021            | -26.1466 | 113.1564 | 08:03 | 09:19 | 22     |
| SBB21_003              | Shark Bay 2021                   | 28/08/2021            | -26.1446 | 113.1567 | 08:07 | 09:25 | 23     |
| SBB21_004              | Shark Bay 2021                   | 28/08/2021            | -26.1428 | 113.1578 | 08:12 | 09:30 | 22     |
| SBB21_005              | Shark Bay 2021                   | 28/08/2021            | -26.1403 | 113.1585 | 08:16 | 09:36 | 23     |
| SBB21_006              | Shark Bay 2021<br>Shark Bay 2021 | 29/08/2021            | -26.165  | 113.22   | 07:04 | 08:05 | 8      |
| SBB21_00/              | Shark Bay 2021                   | 29/08/2021            | -20.1035 | 113,2108 | 07.09 | 08-11 | 8<br>7 |
| SBB21 009              | Shark Bay 2021                   | 29/08/2021            | -26.1626 | 113.2109 | 07:16 | 08:15 | 4      |
| SBB21_010              | Shark Bay 2021                   | 29/08/2021            | -26.1608 | 113.2085 | 07:21 | 08:21 | 6      |
| SBB21_011              | Shark Bay 2021                   | 29/08/2021            | -26.1288 | 113.1915 | 08:34 | 09:35 | 2      |
| SBB21_012              | Shark Bay 2021                   | 29/08/2021            | -26.1267 | 113.1907 | 08:37 | 09:38 | 2      |
| SBB21_013              | Shark Bay 2021                   | 29/08/2021            | -26.1251 | 113.1892 | 08:40 | 09:40 | 1      |
| SB821_014              | Shark Bay 2021                   | 29/08/2021            | -26.1261 | 113.1876 | 08:45 | 09:45 | 1      |
| SBB21_015              | Shark Bay 2021                   | 29/08/2021            | -20.1282 | 113.1879 | U8:49 | U9:48 | 3      |
| SBB21_010<br>SBB21_017 | Shark Bay 2021<br>Shark Bay 2021 | 29/08/2021            | -20.141  | 113 172  | 10:10 | 11.17 | 14     |
| SBB21 018              | Shark Bay 2021                   | 29/08/2021            | -26.1407 | 113.1737 | 10:25 | 11:26 | 17     |
| SBB21_019              | Shark Bay 2021                   | 29/08/2021            | -26.1392 | 113.1766 | 10:29 | 11:29 | 17     |
| SBB21_020              | Shark Bay 2021                   | 29/08/2021            | -26.1373 | 113.178  | 10:33 | 11:34 | 9      |
| SBB21_021              | Shark Bay 2021                   | 29/08/2021            | -26.1172 | 113.1748 | 11:42 | 12:45 | 18     |
| SBB21_022              | Shark Bay 2021                   | 29/08/2021            | -26.114  | 113.1732 | 11:49 | 12:50 | 20     |
| SBB21_023              | Shark Bay 2021                   | 29/08/2021            | -26.1113 | 113.1721 | 11:53 | 12:54 | 21     |
| SB821_024              | Shark Bay 2021                   | 29/08/2021            | -20.1084 | 112 1700 | 11:58 | 12:56 | 20     |
| SBB21_025              | Shark Bay 2021<br>Shark Bay 2021 | 29/08/2021 30/08/2021 | -26.0667 | 113.1582 | 07:14 | 08:16 | 23     |
| SBB21 027              | Shark Bay 2021                   | 30/08/2021            | -26.0635 | 113.1582 | 07:17 | 08:20 | 13     |
| SBB21_028              | Shark Bay 2021                   | 30/08/2021            | -26.0611 | 113.1573 | 07:20 | 08:23 | 14     |
| SBB21_029              | Shark Bay 2021                   | 30/08/2021            | -26.0587 | 113.1564 | 10:43 | 08:28 | 12     |
| SBB21_030              | Shark Bay 2021                   | 30/08/2021            | -26.0556 | 113.1547 | 07:25 | 08:32 | 13     |
| SBB21_031              | Shark Bay 2021                   | 30/08/2021            | -26.0446 | 113.1469 | 08:45 | 09:50 | 18     |
| SBB21_032              | Shark Bay 2021                   | 30/08/2021            | -26.042  | 113.146  | 08:49 | 09:57 | 16     |
| SB821_033              | Shark Bay 2021                   | 30/08/2021            | -26.0384 | 113.1444 | 08:52 | 10:02 | 15     |
| SBB21_034              | Shark Bay 2021                   | 30/08/2021            | -20.035  | 112 1402 | 08:56 | 10:14 | 12     |
| SBB21_035              | Shark Bay 2021                   | 30/08/2021            | -26.0227 | 113.1403 | 10:25 | 11:26 | 13     |
| SBB21_037              | Shark Bay 2021                   | 30/08/2021            | -26.022  | 113.1265 | 10:28 | 11:31 | 26     |
| SBB21_038              | Shark Bay 2021                   | 30/08/2021            | -26.021  | 113.1241 | 10:31 | 11:35 | 26     |
| SBB21_039              | Shark Bay 2021                   | 30/08/2021            | -26.0201 | 113.1212 | 10:34 | 11:39 | 27     |
| SBB21_040              | Shark Bay 2021                   | 30/08/2021            | -26.0196 | 113.1184 | 10:36 | 11:45 | 35     |
| SBB21_041              | Shark Bay 2021                   | 30/08/2021            | -25.9999 | 113.1106 | 11:53 | 12:53 | 21     |
| SBB21_042              | Shark Bay 2021                   | 30/08/2021            | -25.997  | 113.1092 | 11:56 | 12:59 | 18     |
| SBB21_043              | Shark Bay 2021                   | 30/08/2021            | -25.9944 | 112 1075 | 11:58 | 13:02 | 17     |
| SBR21_044<br>SBR21_045 | Shark Bay 2021                   | 30/08/2021            | -25.9910 | 113.1025 | 12:01 | 13:17 | 18     |
|                        |                                  | /00/2021              | 0/0      |          | 12.00 | 10.12 | T.4    |

# **Appendix Table 1b.** Complete metadata for Midwater BRUVs surveys in Shark Bay from 2017,2018,2019 and 2021. Date is in DD/MM/YYYY format. Latitude and longitude are in degrees. Time is in 24 hour format.

| ID                     | String ID            | Expedition                       | Date       | Long in  | Lat in I   | ong out  | Lat out              | lime In Ti | me Out         | SBP18_04             | 5 SBP18_09                | Shark Bay 2018                   | 08/08/2018 | 113.2605 | -26.5203             | 113.2641 | -26.5182 | 07:47 | 07:48 |
|------------------------|----------------------|----------------------------------|------------|----------|------------|----------|----------------------|------------|----------------|----------------------|---------------------------|----------------------------------|------------|----------|----------------------|----------|----------|-------|-------|
| SBP17_001              | SBP17_01             | Shark Bay 2017                   | 15/09/2017 | 113.2253 | -26.2798   | N/A      | N/A                  | 07:45      | 09:05          | SBP18_04             | 6 SBP18_10                | Shark Bay 2018                   | 08/08/2018 | 113.3249 | -26.4794             | 113.3252 | -26.4885 | 08:01 | 10:01 |
| SBP17_002              | SBP17_01             | Shark Bay 2017<br>Shark Bay 2017 | 15/09/2017 | 113.2268 | -26.2803 1 | N/A      | N/A<br>N/A           | 07:51      | 09:13          | SBP18_04<br>SBP18_04 | 7 SBP18_10<br>8 SBP18_10  | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018 | 113.3226 | -26.4798             | 113.3238 | -26.49   | 08:03 | 10:03 |
| SBP17_003              | SBP17_01             | Shark Bay 2017<br>Shark Bay 2017 | 15/09/2017 | 113.2296 | -26 2836 1 | 1/A      | N/A                  | 07:54      | 09:21          | SBP18_04             | 9 SBP18 10                | Shark Bay 2018                   | 08/08/2018 | 113.3188 | -26.4814             | 113.3212 | -26.4924 | 08:07 | 10:07 |
| SBP17_005              | SBP17_01             | Shark Bay 2017                   | 15/09/2017 | 113.2309 | -26.2854   | 113.2318 | -26.2869             | 07:59      | 09:25          | SBP18_05             | 0 SBP18_10                | Shark Bay 2018                   | 08/08/2018 | 113.3168 | -26.4822             | 113.3197 | -26.4933 | 08:10 | 10:10 |
| SBP17_006              | SBP17_02             | Shark Bay 2017                   | 15/09/2017 | 113.1489 | -26.3158   | 113.1621 | -26.3144             | 09:43      | 12:27          | SBP18_05             | 1 SBP18_11                | Shark Bay 2018                   | 08/08/2018 | 113.264  | -26.3423             | 113.2722 | -26.3428 | 15:19 | 17:20 |
| SBP17_007              | SBP17_02             | Shark Bay 2017                   | 15/09/2017 | 113.1495 | -26.3172   | 113.1645 | -26.3152             | 09:47      | 12:30          | SBP18_05             | 2 SBP18_11                | Shark Bay 2018                   | 08/08/2018 | 113.2637 | -26.3406             | 113.2724 | -26.3414 | 15:21 | 17:22 |
| SBP17_008              | SBP17_02             | Shark Bay 2017                   | 15/09/2017 | 113.1511 | -26.3189   | 113.1665 | -26.3162             | 09:49      | 12:35          | SBP18_05             | 3 SBP18_11                | Shark Bay 2018                   | 08/08/2018 | 113.2637 | -26.3392             | 113.2721 | -26.3401 | 15:23 | 17:24 |
| SBP17_009<br>SBP17_010 | SBP17_02<br>SBP17_02 | Shark Bay 2017<br>Shark Bay 2017 | 15/09/2017 | 113.1528 | -20.3205   | 113.1085 | -20.3174             | 09:51      | 12:40          | SBP18_05             | 4 58P18_11<br>5 58P18_11  | Shark Bay 2018<br>Shark Bay 2018 | 08/08/2018 | 113.2629 | -20.3373             | 113.2710 | -20.3387 | 15:25 | 17:20 |
| SBP17_010              | SBP17_03             | Shark Bay 2017<br>Shark Bay 2017 | 16/09/2017 | 113.1127 | -26.1726   | 113.1147 | -26.1854             | 07:50      | 10:32          | SBP18_05             | 6 SBP18 12                | Shark Bay 2018                   | 11/08/2018 | 113.1851 | -26.223              | 113.1569 | -26.2063 | 07:24 | 09:30 |
| SBP17 012              | SBP17 03             | Shark Bay 2017                   | 16/09/2017 | 113.1139 | -26.1745   | 113.1155 | -26.1868             | 07:52      | 10:35          | SBP18_05             | 7 SBP18_12                | Shark Bay 2018                   | 11/08/2018 | 113.182  | -26.2228             | 113.1546 | -26.2066 | 07:26 | 09:32 |
| SBP17_013              | SBP17_03             | Shark Bay 2017                   | 16/09/2017 | 113.115  | -26.1766   | 113.116  | -26.1888             | 07:55      | 10:39          | SBP18_05             | 8 SBP18_12                | Shark Bay 2018                   | 11/08/2018 | 113.1796 | -26.2227             | 113.1525 | -26.2072 | 07:28 | 09:34 |
| SBP17_014              | SBP17_03             | Shark Bay 2017                   | 16/09/2017 | 113.1155 | -26.1788   | 113.1165 | -26.1901             | 07:57      | 10:43          | SBP18_05             | 9 SBP18_12                | Shark Bay 2018                   | 11/08/2018 | 113.1775 | -26.2223             | 113.1507 | -26.2072 | 07:30 | 09:36 |
| SBP17_015              | SBP17_03             | Shark Bay 2017                   | 16/09/2017 | 113.1163 | -26.181    | 113.1171 | -26.1916             | 07:59      | 10:47          | SBP18_06             | 0 SBP18_12                | Shark Bay 2018                   | 11/08/2018 | 113.175  | -26.2217             | 113.1486 | -26.2072 | 07:32 | 09:38 |
| SBP17_016              | SBP17_04             | Shark Bay 2017<br>Shark Bay 2017 | 16/09/2017 | 113.09/1 | -26.095    | 113.0951 | -26.1065             | 11:11      | 13:41          | SBP18_00             | 1 SBP18_13<br>2 SBP18_13  | Shark Bay 2018<br>Shark Bay 2018 | 13/08/2018 | 113.0305 | -25.9908             | 113.038  | -26.0072 | 07:18 | 09:18 |
| SBP17_018              | SBP17 04             | Shark Bay 2017                   | 16/09/2017 | 113.0952 | -26.0913   | 113.0934 | -26.1036             | 11:16      | 13:49          | SBP18 06             | 3 SBP18 13                | Shark Bay 2018                   | 13/08/2018 | 113.0268 | -25.9922             | 113.0387 | -26.0048 | 07:22 | 09:22 |
| SBP17_019              | SBP17_04             | Shark Bay 2017                   | 16/09/2017 | 113.0947 | -26.0898   | 113.0926 | -26.1023             | 11:20      | 13:52          | SBP18_06             | 4 SBP18_13                | Shark Bay 2018                   | 13/08/2018 | 113.0249 | -25.9925             | 113.0395 | -26.0039 | 07:24 | 09:24 |
| SBP17_020              | SBP17_04             | Shark Bay 2017                   | 16/09/2017 | 113.0942 | -26.0881   | 113.0925 | -26.1009             | 11:23      | 13:55          | SBP18_06             | 5 SBP18_13                | Shark Bay 2018                   | 13/08/2018 | 113.0229 | -25.9928             | 113.0402 | -26.003  | 07:26 | 09:26 |
| SBP17_021              | SBP17_05             | Shark Bay 2017                   | 18/09/2017 | 112.9818 | -26.1858   | 112.9631 | -26.1828             | 06:50      | 08:50          | SBP18_06             | 6 SBP18_14                | Shark Bay 2018                   | 13/08/2018 | 112.9142 | -26.0384             | 112.9172 | -26.0572 | 07:44 | 09:44 |
| SBP17_022              | SBP17_05             | Shark Bay 2017<br>Shark Bay 2017 | 18/09/2017 | 112.98   | -26.1839   | 112.9616 | -26.1814             | 06:53      | 08:54          | SBP18_06             | / SBP18_14                | Shark Bay 2018<br>Shark Bay 2018 | 13/08/2018 | 112.9119 | -26.0397             | 112.9156 | -26.0584 | 07:46 | 09:46 |
| SBP17_023              | SBP17_05             | Shark Bay 2017<br>Shark Bay 2017 | 18/09/2017 | 112.373  | -26 1795   | 112.9000 | -26 1805             | 06:59      | 09:00          | SBP18_00             | 9 SBP18_14                | Shark Bay 2018<br>Shark Bay 2018 | 13/08/2018 | 112.9037 | -26.0418             | 112.914  | -26.0606 | 07:50 | 09:50 |
| SBP17 025              | SBP17 05             | Shark Bay 2017                   | 18/09/2017 | 112.9766 | -26.1776   | 112.96   | -26.1794             | 07:02      | 09:04          | SBP18_07             | 0 SBP18_14                | Shark Bay 2018                   | 13/08/2018 | 112.9057 | -26.0432             | 112.9107 | -26.0617 | 07:52 | 09:52 |
| SBP17_026              | SBP17_06             | Shark Bay 2017                   | 18/09/2017 | 112.9204 | -26.1003   | 112.9181 | -26.1061             | 09:20      | 11:25          | SBP18_07             | 1 SBP18_15                | Shark Bay 2018                   | 13/08/2018 | 112.9565 | -26.1528             | 112.9657 | -26.1747 | 10:31 | 12:32 |
| SBP17_027              | SBP17_06             | Shark Bay 2017                   | 18/09/2017 | 112.9192 | -26.0982   | 112.9178 | -26.1046             | 09:23      | 11:28          | SBP18_07             | 2 SBP18_15                | Shark Bay 2018                   | 13/08/2018 | 112.9585 | -26.1554             | 112.967  | -26.1765 | 10:33 | 12:34 |
| SBP17_028              | SBP17_06             | Shark Bay 2017                   | 18/09/2017 | 112.9185 | -26.0966   | 112.918  | -26.1032             | 09:25      | 11:30          | SBP18_07             | 3 SBP18_15                | Shark Bay 2018                   | 13/08/2018 | 112.9602 | -26.157              | 112.9683 | -26.1784 | 10:35 | 12:36 |
| SBP17_029              | SBP17_06             | Shark Bay 2017<br>Shark Bay 2017 | 18/09/2017 | 112.9178 | -26.0947   | 112.9186 | -26.1018             | 09:27      | 11:33          | SBP18_07<br>SBP18_07 | 4 SBP18_15<br>5 SBP18_15  | Shark Bay 2018<br>Shark Bay 2018 | 13/08/2018 | 112.9619 | -26.1588             | 112.9692 | -26.1808 | 10:37 | 12:38 |
| SBP17_030<br>SBP17_031 | SBP17_00<br>SBP17_07 | Shark Bay 2017<br>Shark Bay 2017 | 18/09/2017 | 112.8641 | -26.0266   | 112.8836 | -26.0333             | 11:52      | 14:02          | SBP18_07             | 6 SBP18 16                | Shark Bay 2018                   | 13/08/2018 | 113.0168 | -26.1068             | 113.0101 | -26.1261 | 10:55 | 12:54 |
| SBP17_032              | SBP17_07             | Shark Bay 2017                   | 18/09/2017 | 112.8632 | -26.0249   | 112.8829 | -26.0328             | 11:54      | 14:04          | SBP18_07             | 7 SBP18_16                | Shark Bay 2018                   | 13/08/2018 | 113.0182 | -26.1092             | 113.0094 | -26.1275 | 10:57 | 12:57 |
| SBP17_033              | SBP17_07             | Shark Bay 2017                   | 18/09/2017 | 112.8628 | -26.0231   | 112.8819 | -26.0315             | 11:57      | 14:09          | SBP18_07             | 8 SBP18_16                | Shark Bay 2018                   | 13/08/2018 | 113.0192 | -26.1112             | 113.0092 | -26.1295 | 10:59 | 12:59 |
| SBP17_034              | SBP17_07             | Shark Bay 2017                   | 18/09/2017 | 112.8625 | -26.0208   | 112.8816 | -26.0298             | 11:59      | 14:11          | SBP18_07             | 9 SBP18_16                | Shark Bay 2018                   | 13/08/2018 | 113.0197 | -26.113              | 113.0094 | -26.1311 | 11:02 | 13:02 |
| SBP17_035              | SBP17_07             | Shark Bay 2017                   | 18/09/2017 | 112.8623 | -26.0195   | 112.8812 | -26.0289             | 12:01      | 14:13          | SBP18_08             | 0 SBP18_16                | Shark Bay 2018                   | 13/08/2018 | 113.0204 | -26.115              | 113.0098 | -26.1326 | 11:05 | 13:05 |
| SBP17_030<br>SBP17_037 | SBP17_08             | Shark Bay 2017<br>Shark Bay 2017 | 19/09/2017 | 113.2327 | -20.3752   | 113.2319 | -26.3805             | 07:02      | 09:03          | SBP18_08             | 2 SBP18_17                | Shark Bay 2018<br>Shark Bay 2018 | 14/08/2018 | 112.8681 | -25.9228             | 112.8816 | -25.9205 | 08:22 | 10:22 |
| SBP17_038              | SBP17_08             | Shark Bay 2017<br>Shark Bay 2017 | 19/09/2017 | 113,2313 | -26 3719   | 113.2308 | -26 3781             | 07:08      | 09:11          | SBP18_08             | 3 SBP18 17                | Shark Bay 2018                   | 14/08/2018 | 112.8696 | -25.9202             | 112.8826 | -25.9246 | 08:26 | 10:24 |
| SBP17_039              | SBP17_08             | Shark Bay 2017                   | 19/09/2017 | 113.2286 | -26.3703   | 113.2284 | -26.3769             | 07:10      | 09:15          | SBP18_08             | 4 SBP18_17                | Shark Bay 2018                   | 14/08/2018 | 112.8719 | -25.9191             | 112.8839 | -25.9238 | 08:28 | 10:28 |
| SBP17_040              | SBP17_08             | Shark Bay 2017                   | 19/09/2017 | 113.2275 | -26.369    | 113.2278 | -26.3763             | 07:12      | 09:18          | SBP18_08             | 5 SBP18_17                | Shark Bay 2018                   | 14/08/2018 | 112.8739 | -25.9178             | 112.8859 | -25.9236 | 08:30 | 10:30 |
| SBP17_041              | SBP17_09             | Shark Bay 2017                   | 19/09/2017 | 113.1601 | -26.4399   | 113.165  | -26.4526             | 09:35      | 11:36          | SBP18_08             | 6 SBP18_18                | Shark Bay 2018                   | 14/08/2018 | 112.9441 | -25.8781             | 112.9543 | -25.8794 | 08:47 | 10:47 |
| SBP17_042              | SBP17_09             | Shark Bay 2017                   | 19/09/2017 | 113.1608 | -26.4381   | 113.1657 | -26.4512             | 09:37      | 11:39          | SBP18_08             | 7 SBP18_18                | Shark Bay 2018                   | 14/08/2018 | 112.9462 | -25.8767             | 112.9556 | -25.8786 | 08:49 | 10:49 |
| SBP17_043<br>SBP17_044 | SBP17_09             | Shark Bay 2017<br>Shark Bay 2017 | 19/09/2017 | 113.1013 | -20.4303   | 113.100  | -26.4494             | 09:40      | 11:42          | SBP18_08             | 0 SBP18_18                | Shark Bay 2018<br>Shark Bay 2018 | 14/08/2018 | 112.9487 | -25.8757             | 112.9571 | -25.8768 | 08:51 | 10:51 |
| SBP17_045              | SBP17_09             | Shark Bay 2017<br>Shark Bay 2017 | 19/09/2017 | 113.1621 | -26.4329   | 113.1658 | -26,4463             | 09:45      | 11:48          | SBP18_09             | 0 SBP18 18                | Shark Bay 2018                   | 14/08/2018 | 112.9526 | -25.8736             | 112.9598 | -25.876  | 08:55 | 10:55 |
| SBP17_046              | SBP17_10             | Shark Bay 2017                   | 19/09/2017 | 113.0454 | -26.3399   | 113.05   | -26.3365             | 12:11      | 14:13          | SBP18_09             | 1 SBP18_19                | Shark Bay 2018                   | 14/08/2018 | 112.9376 | -25.8046             | 112.9427 | -25.8108 | 11:38 | 13:38 |
| SBP17_047              | SBP17_10             | Shark Bay 2017                   | 19/09/2017 | 113.0453 | -26.3378   | 113.05   | -26.3349             | 12:13      | 14:17          | SBP18_09             | 2 SBP18_19                | Shark Bay 2018                   | 14/08/2018 | 112.9376 | -25.8026             | 112.942  | -25.8095 | 11:40 | 13:40 |
| SBP17_048              | SBP17_10             | Shark Bay 2017                   | 19/09/2017 | 113.0454 | -26.3357   | 113.05   | -26.3332             | 12:15      | 14:21          | SBP18_09             | 3 SBP18_19                | Shark Bay 2018                   | 14/08/2018 | 112.9372 | -25.8007             | 112.9424 | -25.8078 | 11:42 | 13:42 |
| SBP17_049              | SBP17_10             | Shark Bay 2017<br>Shark Bay 2017 | 19/09/2017 | 113.0458 | -26.3336   | 113.0501 | -26.3316             | 12:18      | 14:24          | SBP18_09<br>SBP18_09 | 4 58P18_19<br>5 58P18_10  | Shark Bay 2018<br>Shark Bay 2018 | 14/08/2018 | 112.9305 | -25.7989             | 112.9419 | -25.8003 | 11:44 | 13:44 |
| SBP17_050<br>SBP17_051 | SBP17_10             | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017 | 112 9223 | -25 9501   | 112 9151 | -25 9542             | 07:04      | 09:18          | SBP18_09             | 6 SBP18 20                | Shark Bay 2018                   | 14/08/2018 | 112.9225 | -25.7372             | 112.9245 | -25.7464 | 12:01 | 14:01 |
| SBP17_052              | SBP17_11             | Shark Bay 2017                   | 20/09/2017 | 112.9217 | -25.9482   | 112.9156 | -25.9524             | 07:06      | 09:22          | SBP18_09             | 7 SBP18_20                | Shark Bay 2018                   | 14/08/2018 | 112.9222 | -25.7351             | 112.9243 | -25.7458 | 12:03 | 14:03 |
| SBP17_053              | SBP17_11             | Shark Bay 2017                   | 20/09/2017 | 112.9213 | -25.9461   | 112.9163 | -25.9507             | 07:10      | 09:26          | SBP18_09             | 8 SBP18_20                | Shark Bay 2018                   | 14/08/2018 | 112.9217 | -25.7335             | 112.9244 | -25.7443 | 12:05 | 14:05 |
| SBP17_054              | SBP17_11             | Shark Bay 2017                   | 20/09/2017 | 112.9207 | -25.9442   | 112.9165 | -25.9494             | 07:15      | 09:30          | SBP18_09             | 9 SBP18_20                | Shark Bay 2018                   | 14/08/2018 | 112.9217 | -25.7321             | 112.9242 | -25.7432 | 12:07 | 14:07 |
| SBP17_055              | SBP17_11             | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017 | 112.9206 | -25.9422   | 112.9166 | -25.9487             | 07:19      | 09:32          | SBP18_10<br>SBP18_00 | 0 SBP18_20                | Shark Bay 2018<br>Shark Bay 2010 | 14/08/2018 | 112.9222 | -25./304             | 112.925  | -25./41/ | 12:09 | 14:09 |
| SBP17_050<br>SBP17_057 | SBP17_12<br>SBP17_12 | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017 | 112.9048 | -26.0174   | 112.9598 | -26.010              | 10:02      | 12:13          | SBP19_00             | 2 SBP19_01                | Shark Bay 2019                   | 17/09/2019 | 113.1048 | -26 1532             | 113.1077 | -26.148  | 07:02 | 09:06 |
| SBP17 058              | SBP17 12             | Shark Bay 2017                   | 20/09/2017 | 112.9656 | -26.0133   | 112.9605 | -26.0105             | 10:04      | 12:21          | SBP19_00             | 3 SBP19_01                | Shark Bay 2019                   | 17/09/2019 | 113.1033 | -26.1514             | 113.1071 | -26.1461 | 07:07 | 09:10 |
| SBP17_059              | SBP17_12             | Shark Bay 2017                   | 20/09/2017 | 112.9662 | -26.0113   | 112.9609 | -26.0097             | 10:06      | 12:25          | SBP19_00             | 4 SBP19_01                | Shark Bay 2019                   | 17/09/2019 | 113.1024 | -26.1495             | 113.1066 | -26.144  | 07:11 | 09:14 |
| SBP17_060              | SBP17_12             | Shark Bay 2017                   | 20/09/2017 | 112.9669 | -26.0098   | 112.9612 | -26.0086             | 10:09      | 12:28          | SBP19_00             | 5 SBP19_01                | Shark Bay 2019                   | 17/09/2019 | 113.1015 | -26.1479             | 113.1065 | -26.1423 | 07:15 | 09:19 |
| SBP17_061              | SBP17_13             | Shark Bay 2017                   | 20/09/2017 | 112.9998 | -26.0776   | 112.9939 | -26.0815             | 12:54      | 15:25          | SBP19_00             | 6 SBP19_02                | Shark Bay 2019<br>Shark Bay 2010 | 17/09/2019 | 113.0389 | -26.1732             | 113.0357 | -26.1746 | 07:42 | 09:42 |
| SBP17_062<br>SBP17_063 | SBP17_13<br>SBP17_13 | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017 | 113.0015 | -26.0763   | 112.9944 | -26.0802             | 12:58      | 15:28          | SBP19_00<br>SBP19_00 | 7 SBP19_02<br>8 SBP19_02  | Shark Bay 2019<br>Shark Bay 2019 | 17/09/2019 | 113.038  | -26.1710             | 113.0343 | -26.1735 | 07:44 | 09:43 |
| SBP17_003              | SBP17_13<br>SBP17_13 | Shark Bay 2017<br>Shark Bay 2017 | 20/09/2017 | 113.0027 | -26.0743   | 112.9953 | -26.0768             | 13:02      | 15:36          | SBP19_00             | 9 SBP19 02                | Shark Bay 2019                   | 17/09/2019 | 113.0362 | -26.1685             | 113.0324 | -26.1711 | 07:49 | 09:54 |
| SBP17_065              | SBP17_13             | Shark Bay 2017                   | 20/09/2017 | 113.0047 | -26.071    | 112.9957 | -26.0755             | 13:06      | 15:39          | SBP19_01             | 0 SBP19_02                | Shark Bay 2019                   | 17/09/2019 | 113.0353 | -26.1671             | 113.0318 | -26.1698 | 07:52 | 09:57 |
| SBP17_066              | SBP17_14             | Shark Bay 2017                   | 21/09/2017 | 113.1662 | -26.2319   | 113.1756 | -26.2275             | 06:42      | 08:42          | SBP19_01             | 1 SBP19_03                | Shark Bay 2019                   | 17/09/2019 | 113.0496 | -26.2407             | 113.0514 | -26.242  | 10:30 | 12:31 |
| SBP17_067              | SBP17_14             | Shark Bay 2017                   | 21/09/2017 | 113.1685 | -26.2307   | 113.1804 | -26.2282             | 06:44      | 08:45          | SBP19_01             | 2 SBP19_03                | Shark Bay 2019                   | 17/09/2019 | 113.0489 | -26.2393             | 113.0512 | -26.2406 | 10:33 | 12:33 |
| SBP17_068              | SBP17_14             | Shark Bay 2017<br>Shark Bay 2017 | 21/09/2017 | 113.1708 | -26.2296   | 113.1821 | -26.2277             | 06:48      | 08:48          | SBP19_01             | 3 SBP19_03                | Shark Bay 2019<br>Shark Bay 2010 | 17/09/2019 | 113.0481 | -26.2376             | 113.0508 | -26.2397 | 10:36 | 12:35 |
| SBP17_009              | SBP17_14<br>SBP17_14 | Shark Bay 2017<br>Shark Bay 2017 | 21/09/2017 | 113.1752 | -26 2276   | 113.1841 | -26 2265             | 06:52      | 08:54          | SBP19_01<br>SBP19_01 | 5 SBP19_03                | Shark Bay 2019<br>Shark Bay 2019 | 17/09/2019 | 113.0471 | -26.2348             | 113.0507 | -26.2340 | 10:35 | 12:40 |
| SBP17 071              | SBP17 15             | Shark Bay 2017                   | 21/09/2017 | 113.0684 | -26.2386   | 113.0852 | -26.233              | 09:45      | 11:45          | SBP19_01             | 6 SBP19_04                | Shark Bay 2019                   | 17/09/2019 | 113.0594 | -26.2761             | 113.04   | -26.277  | 11:02 | 13:26 |
| SBP17_072              | SBP17_15             | Shark Bay 2017                   | 21/09/2017 | 113.0708 | -26.2387   | 113.0874 | -26.2331             | 09:47      | 11:48          | SBP19_01             | 7 SBP19_04                | Shark Bay 2019                   | 17/09/2019 | 113.0584 | -26.2736             | 113.0389 | -26.2754 | 11:05 | 13:28 |
| SBP17_073              | SBP17_15             | Shark Bay 2017                   | 21/09/2017 | 113.0738 | -26.2384   | 113.0898 | -26.2331             | 09:50      | 11:52          | SBP19_01             | 8 SBP19_04                | Shark Bay 2019                   | 17/09/2019 | 113.0579 | -26.2716             | 113.0379 | -26.2737 | 11:07 | 13:30 |
| SBP17_074              | SBP17_15             | Shark Bay 2017                   | 21/09/2017 | 113.0763 | -26.2384   | 113.0921 | -26.2328             | 09:52      | 11:55          | SBP19_01             | 9 SBP19_04                | Shark Bay 2019                   | 17/09/2019 | 113.0573 | -26.2698             | 113.0369 | -26.2724 | 11:09 | 13:33 |
| SBP17_075              | SBP17_15             | Shark Bay 2017<br>Shark Bay 2018 | 21/09/2017 | 113.0787 | -26.2389   | 113.0944 | -26.2329             | 07:54      | 11:57          | SBP19_02<br>SBP19_02 | 1 SBP19_04                | Shark Bay 2019<br>Shark Bay 2019 | 17/09/2019 | 113.0509 | -20.2082             | 113.0309 | -26.2/23 | 14:06 | 15:35 |
| SBP18_002              | SBP18_01             | Shark Bay 2018                   | 06/08/2018 | 113.1050 | -26.2479   | 113.1208 | -26.1284             | 07:56      | 09:58          | SBP19 02             | 2 SBP19 05                | Shark Bay 2019                   | 17/09/2019 | 113.0269 | -26.3143             | 113.0232 | -26.3102 | 14:11 | 16:11 |
| SBP18_003              | SBP18_01             | Shark Bay 2018                   | 06/08/2018 | 113.1047 | -26.2473   | 113.1191 | -26.1276             | 07:58      | 10:00          | SBP19_02             | 3 SBP19_05                | Shark Bay 2019                   | 17/09/2019 | 113.0269 | -26.3123             | 113.0228 | -26.3082 | 14:16 | 16:16 |
| SBP18_004              | SBP18_01             | Shark Bay 2018                   | 06/08/2018 | 113.1025 | -26.2464   | 113.117  | -26.1262             | 08:00      | 10:02          | SBP19_02             | 4 SBP19_05                | Shark Bay 2019                   | 17/09/2019 | 113.0266 | -26.3102             | 113.0223 | -26.3062 | 14:21 | 16:22 |
| SBP18_005              | SBP18_01             | Shark Bay 2018                   | 06/08/2018 | 113.1003 | -26.2455   | 113.115  | -26.1248             | 08:02      | 10:04          | SBP19_02             | 5 SBP19_05                | Shark Bay 2019                   | 17/09/2019 | 113.0261 | -26.3083             | 113.0219 | -26.3048 | 14:25 | 16:26 |
| SBP18_005<br>SBP18_007 | SBP18_02<br>SBP18_02 | Shark Bay 2018<br>Shark Bay 2018 | 06/08/2018 | 113.109  | -26.1553   | 113.1085 | -26.1076             | 08:23      | 10:23          | SBP19_02<br>SBP19_02 | 7 SBP19_06                | Shark Bay 2019<br>Shark Bay 2019 | 17/09/2019 | 113.0129 | -20.3557             | 112,9995 | -26.3459 | 14:40 | 16:30 |
| SBP18 008              | SBP18 02             | Shark Bay 2018                   | 06/08/2018 | 113.1045 | -26.153    | 113.104  | -26.1049             | 08:27      | 10:29          | SBP19_02             | 8 SBP19_06                | Shark Bay 2019                   | 17/09/2019 | 113.0105 | -26.3513             | 112.9995 | -26.3419 | 14:45 | 16:41 |
| SBP18_009              | SBP18_02             | Shark Bay 2018                   | 06/08/2018 | 113.1027 | -26.1526   | 113.102  | -26.1038             | 08:29      | 10:31          | SBP19_02             | 9 SBP19_06                | Shark Bay 2019                   | 17/09/2019 | 113.0096 | -26.3495             | 112.9991 | -26.3411 | 14:48 | 16:43 |
| SBP18_010              | SBP18_02             | Shark Bay 2018                   | 06/08/2018 | 113.1003 | -26.152    | 113.0996 | -26.1026             | 08:31      | 10:33          | SBP19_03             | 0 SBP19_06                | Shark Bay 2019                   | 17/09/2019 | 113.0091 | -26.3477             | 112.9983 | -26.3395 | 14:51 | 16:47 |
| SBP18_011              | SBP18_03             | Shark Bay 2018                   | 06/08/2018 | 113.1032 | -26.2388   | 113.1081 | -26.1133             | 11:00      | 13:04          | SBP19_03             | 1 SBP19_07                | Shark Bay 2019<br>Shark Bay 2010 | 18/09/2019 | 113.1549 | -26.44/1             | 113.1335 | -26.4266 | 07:26 | 09:27 |
| SBP18_012<br>SBP18_013 | SBP18_03             | Shark Bay 2018                   | 06/08/2018 | 113.1015 | -20.2388   | 113.1001 | -26 1116             | 11:05      | 13:08          | SBP19_03             | 3 SBP19 07                | Shark Bay 2019                   | 18/09/2019 | 113.1540 | -26.4424             | 113.1325 | -26.4222 | 07:31 | 09:34 |
| SBP18 014              | SBP18 03             | Shark Bay 2018                   | 06/08/2018 | 113.0975 | -26.2385   | 113.1029 | -26.1107             | 11:07      | 13:10          | SBP19 03             | 4 SBP19_07                | Shark Bay 2019                   | 18/09/2019 | 113.154  | -26.4404             | 113.1318 | -26.4201 | 07:33 | 09:37 |
| SBP18_015              | SBP18_03             | Shark Bay 2018                   | 06/08/2018 | 113.0962 | -26.2383   | 113.1012 | -26.1096             | 11:09      | 13:15          | SBP19_03             | 5 SBP19_07                | Shark Bay 2019                   | 18/09/2019 | 113.1538 | -26.4384             | 113.1306 | -26.4184 | 07:35 | 09:40 |
| SBP18_016              | SBP18_04             | Shark Bay 2018                   | 06/08/2018 | 113.0914 | -26.1424   | 113.0937 | -26.0934             | 11:13      | 13:20          | SBP19_03             | 6 SBP19_08                | Shark Bay 2019                   | 18/09/2019 | 113.1935 | -26.4188             | 113.1714 | -26.4013 | 07:49 | 09:53 |
| SBP18_017              | SBP18_04             | Shark Bay 2018                   | 06/08/2018 | 113.0897 | -26.1412   | 113.0913 | -26.0925             | 11:15      | 13:22          | SBP19_03             | 7 SBP19_08                | Shark Bay 2019                   | 18/09/2019 | 113.1933 | -26.4167             | 113.1711 | -26.3993 | 07:51 | 09:56 |
| SBP18_018              | SBP18_04             | Shark Bay 2018<br>Shark Bay 2018 | 06/08/2018 | 113.0885 | -26.1399   | 113.0896 | -26.0916             | 11:17      | 13:24          | SBP19_03<br>SBP19_03 | 8 SBP19_08<br>9 SBP19_08  | Shark Bay 2019<br>Shark Bay 2019 | 18/09/2019 | 113.1929 | -26.4145             | 113.1/02 | -26.3971 | 07:55 | 10:03 |
| SBP18_019<br>SBP18_020 | SBP18_04             | Shark Bay 2018<br>Shark Bay 2018 | 06/08/2018 | 113.0854 | -26.1393   | 113.0866 | -26.0907             | 11:19      | 13:20          | SBP19_03             | 0 SBP19_08                | Shark Bay 2019                   | 18/09/2019 | 113.1918 | -26.4105             | 113.1681 | -26.3931 | 07:58 | 10:05 |
| SBP18 021              | SBP18 05             | Shark Bay 2018                   | 07/08/2018 | 113.1289 | -26.4593   | 113.127  | -26.4711             | 08:00      | 10:00          | SBP19_04             | 1 SBP19_09                | Shark Bay 2019                   | 18/09/2019 | 113.1318 | -26.3431             | 113.1333 | -26.3391 | 10:26 | 12:30 |
| SBP18_022              | SBP18_05             | Shark Bay 2018                   | 07/08/2018 | 113.1268 | -26.4588   | 113.1254 | -26.4711             | 08:02      | 10:02          | SBP19_04             | 2 SBP19_09                | Shark Bay 2019                   | 18/09/2019 | 113.1325 | -26.3415             | 113.1349 | -26.3381 | 10:29 | 12:33 |
| SBP18_023              | SBP18_05             | Shark Bay 2018                   | 07/08/2018 | 113.1251 | -26.458    | 113.124  | -26.4705             | 08:04      | 10:04          | SBP19_04             | 3 SBP19_09                | Shark Bay 2019                   | 18/09/2019 | 113.1338 | -26.34               | 113.137  | -26.3369 | 10:32 | 12:36 |
| SBP18_024              | SBP18_05             | Shark Bay 2018                   | 07/08/2018 | 113.1232 | -26.4569   | 113.1224 | -26.4703             | 08:06      | 10:06          | SBP19_04             | 4 SBP19_09                | Shark Bay 2019<br>Shark Bay 2010 | 18/09/2019 | 113.1353 | -26.3385             | 113.1389 | -26.3361 | 10:35 | 12:39 |
| SBP18_025              | SBP18_06             | Shark Bay 2018                   | 07/08/2018 | 113.1209 | -20.4566   | 113.121  | -26.47<br>-26.4139   | 08:08      | 10:08          | SBP19_04<br>SRP10_04 | 5 30P19_09                | Shark Bay 2019<br>Shark Bay 2019 | 18/09/2019 | 113,1776 | -26.3255             | 113,1865 | -26,3275 | 10:50 | 12:41 |
| SBP18 027              | SBP18 06             | Shark Bay 2018                   | 07/08/2018 | 113.1557 | -26.4098   | 113.1507 | -26.4136             | 08:26      | 10:28          | SBP19 04             | 7 SBP19 10                | Shark Bay 2019                   | 18/09/2019 | 113.1793 | -26.3248             | 113.1877 | -26.3267 | 10:53 | 13:00 |
| SBP18_028              | SBP18_06             | Shark Bay 2018                   | 07/08/2018 | 113.1537 | -26.4087   | 113.149  | -26.4135             | 08:28      | 10:30          | SBP19_04             | 8 SBP19_10                | Shark Bay 2019                   | 18/09/2019 | 113.1812 | -26.3241             | 113.1894 | -26.3258 | 10:54 | 13:03 |
| SBP18_029              | SBP18_06             | Shark Bay 2018                   | 07/08/2018 | 113.1519 | -26.408    | 113.1477 | -26.4135             | 08:30      | 10:32          | SBP19_04             | 9 SBP19_10                | Shark Bay 2019                   | 18/09/2019 | 113.1832 | -26.3234             | 113.1911 | -26.325  | 10:56 | 13:06 |
| SBP18_030              | SBP18_06             | Shark Bay 2018                   | 07/08/2018 | 113.1499 | -26.4072   | 113.1465 | -26.4127             | 08:34      | 10:34          | SBP19_05             | 0 SBP19_10                | Shark Bay 2019                   | 18/09/2019 | 113.1853 | -26.3233             | 113.1927 | -26.3249 | 10:58 | 13:09 |
| SBP18_031              | SBP18_07             | Shark Bay 2018                   | 07/08/2018 | 113.0697 | -26.367    | 113.0689 | -26.3732             | 11:01      | 13:02          | SBP19_05             | 1 SBP19_11                | Shark Bay 2019                   | 18/09/2019 | 113.2102 | -26.2819             | 113.2075 | -26.2802 | 13:30 | 15:36 |
| SBP18_032<br>SBP18_033 | SBP18_07<br>SBP18_07 | Shark Bay 2018<br>Shark Bay 2019 | 07/08/2018 | 113.0678 | -26.3663   | 113.0674 | -26.3733<br>-26.3732 | 11:03      | 13:04<br>13:0F | 58P19_05<br>SRP10_05 | 2 58P19_11<br>3 58P19_11  | Shark Bay 2019<br>Shark Bay 2019 | 18/09/2019 | 113,2128 | -20.28U1<br>-26,2796 | 113,2107 | -20.279  | 13:33 | 15:39 |
| SBP18 034              | SBP18 07             | Shark Bay 2018                   | 07/08/2018 | 113.0641 | -26.365    | 113.0645 | -26.3733             | 11:07      | 13:08          | SBP19 05             | 4 SBP19_11                | Shark Bay 2019                   | 18/09/2019 | 113.2154 | -26.2789             | 113.212  | -26.2769 | 13:39 | 15:45 |
| SBP18_035              | SBP18_07             | Shark Bay 2018                   | 07/08/2018 | 113.062  | -26.3643   | 113.0629 | -26.3731             | 11:09      | 13:10          | SBP19_05             | 5 SBP19_11                | Shark Bay 2019                   | 18/09/2019 | 113.217  | -26.2782             | 113.2135 | -26.2765 | 13:41 | 15:49 |
| SBP18_036              | SBP18_08             | Shark Bay 2018                   | 07/08/2018 | 113.0196 | -26.2489   | 113.0117 | -26.2485             | 11:33      | 13:33          | SBP19_05             | 6 SBP19_12                | Shark Bay 2019                   | 18/09/2019 | 113.1804 | -26.2424             | 113.1986 | -26.2416 | 13:55 | 16:14 |
| SBP18_037              | SBP18_08             | Shark Bay 2018                   | 07/08/2018 | 113.017  | -26.2491   | 113.0099 | -26.249              | 11:35      | 13:35          | SBP19_05             | 7 SBP19_12                | Shark Bay 2019                   | 18/09/2019 | 113.1822 | -26.2417             | 113.2003 | -26.2407 | 13:58 | 16:17 |
| SEP18_038              | SBP18_08             | Shark Bay 2018                   | 07/08/2018 | 113.0142 | -26.2489   | 113.0081 | -26.2493             | 11:37      | 13:37          | SBP19_05             | o 38P19_12<br>9 \$8p10_12 | Shark Bay 2019<br>Shark Bay 2019 | 18/09/2019 | 113.1841 | -20.2406             | 113 2049 | -26.24   | 14:01 | 16:20 |
| SBP18 040              | SBP18 OR             | Shark Bay 2018                   | 07/08/2018 | 113.0118 | -20.2486   | 113.0007 | -20.2493             | 11:39      | 13:39          | SBP19_05             | 0 SBP19_12                | Shark Bay 2019                   | 18/09/2019 | 113.188  | -26.2383             | 113.2048 | -26.2389 | 14:06 | 16:26 |
| SBP18 041              | SBP18 09             | Shark Bay 2018                   | 08/08/2018 | 113.2662 | -26.5271   | 113.2638 | -26.5255             | 07:38      | 07:40          | SBP19 06             | 1 SBP19_13                | Shark Bay 2019                   | 23/09/2019 | 113.005  | -26.0019             | 112.9993 | -26.0046 | 06:42 | 08:50 |
| SBP18_042              | SBP18_09             | Shark Bay 2018                   | 08/08/2018 | 113.2641 | -26.5257   | 113.2626 | -26.5247             | 07:41      | 07:42          | SBP19_06             | 2 SBP19_13                | Shark Bay 2019                   | 23/09/2019 | 113.0031 | -26.001              | 112.9979 | -26.0041 | 06:44 | 08:54 |
| SBP18_043              | SBP18_09             | Shark Bay 2018                   | 08/08/2018 | 113.2627 | -26.5243   | 113.2614 | -26.5235             | 07:43      | 07:44          | SBP19_06             | 3 SBP19_13                | Shark Bay 2019                   | 23/09/2019 | 113.0011 | -26.0001             | 112.9964 | -26.0033 | 06:47 | 08:58 |
| SBP18_044              | SBP18_09             | Shark Bay 2018                   | 08/08/2018 | 113.2614 | -26.5223   | 113.2609 | -26.522              | 07:45      | 07:46          | SBP19_06             | 4 SBP19_13                | Shark Bay 2019                   | 23/09/2019 | 112.9991 | -25.9993             | 112.9947 | -26.0027 | 06:50 | 09:00 |

| SBP19_065              | SBP19_13             | Shark Bay 2019                   | 23/09/2019               | 112.9975             | -25.9982             | 112.9929             | -26.0023             | 06:52          | 09:04          |
|------------------------|----------------------|----------------------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|
| SBP19_066<br>SBP19_067 | SBP19_14<br>SBP19_14 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019<br>23/09/2019 | 112.9503<br>112.9478 | -26.0097<br>-26.0092 | 112.9048<br>112.9028 | -25.9854<br>-25.9856 | 07:05<br>07:07 | 09:47<br>09:50 |
| SBP19_068              | SBP19_14             | Shark Bay 2019                   | 23/09/2019               | 112.9455             | -26.0082             | 112.8985             | -25.9843             | 07:09          | 09:53          |
| SBP19_000<br>SBP19_070 | SBP19_14<br>SBP19_14 | Shark Bay 2019                   | 23/09/2019               | 112.9409             | -26.0057             | 112.8951             | -25.9838             | 07:13          | 09:59          |
| SBP19_071<br>SBP19_072 | SBP19_15<br>SBP19_15 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019               | 112.9892<br>112.9872 | -25.8666             | 112.9841<br>112.9825 | -25.8739<br>-25.8747 | 10:39          | 12:41          |
| SBP19_073              | SBP19_15             | Shark Bay 2019                   | 23/09/2019               | 112.985              | -25.8668             | 112.9811             | -25.8748             | 10:44          | 12:47          |
| SBP19_074<br>SBP19_075 | SBP19_15<br>SBP19_15 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019<br>23/09/2019 | 112.9833<br>112.9813 | -25.8668<br>-25.8668 | 112.9795<br>112.9778 | -25.8749<br>-25.8754 | 10:47<br>10:50 | 12:49<br>13:00 |
| SBP19_076              | SBP19_16             | Shark Bay 2019                   | 23/09/2019               | 112.9437             | -25.8756             | 112.938              | -25.8855             | 10:58          | 13:04          |
| SBP19_078              | SBP19_10<br>SBP19_16 | Shark Bay 2019                   | 23/09/2019               | 112.9399             | -25.8772             | 112.9346             | -25.8877             | 11:03          | 13:11          |
| SBP19_079<br>SBP19_080 | SBP19_16<br>SBP19_16 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019               | 112.9377<br>112.9358 | -25.8779<br>-25.8783 | 112.9328             | -25.8883<br>-25.8887 | 11:06          | 13:14          |
| SBP19_081              | SBP19_17             | Shark Bay 2019                   | 23/09/2019               | 112.9465             | -25.7749             | 112.947              | -25.7892             | 13:50          | 15:52          |
| SBP19_082<br>SBP19_083 | SBP19_17<br>SBP19_17 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019 23/09/2019    | 112.9446<br>112.9429 | -25.7759<br>-25.7767 | 112.9455<br>112.9442 | -25.791<br>-25.7926  | 13:53<br>13:55 | 15:54<br>15:56 |
| SBP19_084              | SBP19_17             | Shark Bay 2019                   | 23/09/2019               | 112.9407             | -25.7775             | 112.9428             | -25.7939             | 13:57          | 15:58          |
| SBP19_085<br>SBP19_086 | SBP19_17<br>SBP19_18 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019 23/09/2019    | 112.9388<br>112.8965 | -25.7781             | 112.9414<br>112.8968 | -25.7953             | 13:59          | 16:00          |
| SBP19_087              | SBP19_18             | Shark Bay 2019                   | 23/09/2019               | 112.8945             | -25.7716             | 112.8956             | -25.7819             | 14:12          | 16:18          |
| SBP19_089              | SBP19_18<br>SBP19_18 | Shark Bay 2019                   | 23/09/2019               | 112.8922             | -25.7722             | 112.8938             | -25.7827             | 14:14          | 16:22          |
| SBP19_090<br>SBP19_091 | SBP19_18<br>SBP19_19 | Shark Bay 2019<br>Shark Bay 2019 | 23/09/2019               | 112.8891             | -25.7727             | 112.8907             | -25.7833             | 14:18          | 16:24          |
| SBP19_092              | SBP19_19             | Shark Bay 2019                   | 24/09/2019               | 113.0468             | -26.0851             | 113.0302             | -26.0605             | 07:08          | 09:30          |
| SBP19_093<br>SBP19_094 | SBP19_19<br>SBP19_19 | Shark Bay 2019<br>Shark Bay 2019 | 24/09/2019<br>24/09/2019 | 113.0459<br>113.0445 | -26.0829<br>-26.0791 | 113.0293<br>113.0283 | -26.058<br>-26.0557  | 07:18          | 09:34          |
| SBP19_095              | SBP19_19             | Shark Bay 2019                   | 24/09/2019               | 113.044              | -26.0782             | 113.027              | -26.0535             | 07:25          | 09:42          |
| SBP19_096<br>SBP19_097 | SBP19_20<br>SBP19_20 | Shark Bay 2019<br>Shark Bay 2019 | 24/09/2019 24/09/2019    | 113.0051<br>113.0045 | -26.0693             | 112.9884<br>112.9873 | -26.0527             | 07:35          | 09:53          |
| SBP19_098              | SBP19_20             | Shark Bay 2019                   | 24/09/2019               | 113.0035             | -26.0661             | 112.9854             | -26.0492             | 07:42          | 09:59          |
| SBP19_000<br>SBP19_100 | SBP19_20<br>SBP19_20 | Shark Bay 2019                   | 24/09/2019               | 113.0017             | -26.0619             | 112.9826             | -26.0452             | 07:43          | 10:02          |
| SBP21_001<br>SBP21_002 | SBP21_01<br>SBP21_01 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021 23/08/2021    | 113.1109             | -26.1512             | 113.1061             | -26.1461<br>-26.1448 | 07:51          | 09:51          |
| SBP21_003              | SBP21_01             | Shark Bay 2021                   | 23/08/2021               | 113.1091             | -26.1484             | 113.1054             | -26.1433             | 07:59          | 10:04          |
| SBP21_004<br>SBP21_005 | SBP21_01<br>SBP21_01 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021 23/08/2021    | 113.1081<br>113.107  | -26.1467<br>-26.1449 | 113.1045<br>113.1038 | -26.1417<br>-26.1399 | 08:03          | 10:08          |
| SBP21_006              | SBP21_02             | Shark Bay 2021                   | 23/08/2021               | 113.0866             | -26.1758             | 113.0831             | -26.1802             | 08:23          | 10:38          |
| SBP21_007<br>SBP21_008 | SBP21_02<br>SBP21_02 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021               | 113.0855             | -26.1732             | 113.0829             | -26.1786             | 08:28          | 10:45          |
| SBP21_009              | SBP21_02             | Shark Bay 2021                   | 23/08/2021               | 113.0832             | -26.1713             | 113.0828             | -26.1762             | 08:35          | 10:49          |
| SBP21_011              | SBP21_03             | Shark Bay 2021                   | 23/08/2021               | 113.0481             | -26.0904             | 113.0503             | -26.0801             | 11:38          | 13:39          |
| SBP21_012<br>SBP21_013 | SBP21_03<br>SBP21_03 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021 23/08/2021    | 113.0469<br>113.046  | -26.0889<br>-26.0872 | 113.0492<br>113.0484 | -26.0776<br>-26.076  | 11:42<br>11:45 | 13:42<br>13:46 |
| SBP21_014              | SBP21_03             | Shark Bay 2021                   | 23/08/2021               | 113.0454             | -26.0852             | 113.0474             | -26.0734             | 11:48          | 13:51          |
| SBP21_015<br>SBP21_016 | SBP21_03<br>SBP21_04 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021 23/08/2021    | 113.0446<br>NA       | -26.0831<br>NA       | 113.0467<br>NA       | -26.0/14<br>NA       | 11:52<br>NA    | 13:55<br>NA    |
| SBP21_017              | SBP21_04             | Shark Bay 2021                   | 23/08/2021               | 113.0117             | -26.1058             | 113.021              | -26.0984             | 12:06          | 14:16          |
| SBP21_018<br>SBP21_019 | SBP21_04<br>SBP21_04 | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021               | 113.0115             | -26.1038             | 113.0217             | -26.0968             | 12:09          | 14:24          |
| SBP21_020              | SBP21_04             | Shark Bay 2021<br>Shark Bay 2021 | 23/08/2021               | 113.0116             | -26.1                | 113.0223             | -26.0937             | 12:15          | 14:34          |
| SBP21_022              | SBP21_05             | Shark Bay 2021                   | 24/08/2021               | 113.0064             | -26.0017             | 112.9984             | -25.9884             | 07:12          | 09:12          |
| SBP21_023<br>SBP21_024 | SBP21_05<br>SBP21_05 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 113.0049<br>113.0031 | -26.0004<br>-25.999  | 112.996<br>112.9941  | -25.9873<br>-25.9859 | 07:14          | 09:17          |
| SBP21_025              | SBP21_05             | Shark Bay 2021                   | 24/08/2021               | 113.0016             | -25.9977             | 112.9924             | -25.985              | 07:24          | 09:26          |
| SBP21_026<br>SBP21_027 | SBP21_06<br>SBP21_06 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021<br>24/08/2021 | 112.9506<br>112.9486 | -26.0101<br>-26.0088 | 112.9462<br>112.9438 | -26.0032<br>-26.0023 | 07:45<br>07:48 | 09:40<br>09:45 |
| SBP21_028              | SBP21_06             | Shark Bay 2021                   | 24/08/2021               | 112.9465             | -26.0071             | 112.942              | -26.0015             | 07:54          | 09:48          |
| SBP21_025<br>SBP21_030 | SBP21_00<br>SBP21_06 | Shark Bay 2021                   | 24/08/2021               | 112.944              | -26.0044             | 112.9391             | -25.9989             | 08:01          | 09:57          |
| SBP21_031<br>SBP21_032 | SBP21_07<br>SBP21_07 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 112.9143<br>112.9122 | -25.9304<br>-25.9288 | 112.9059<br>112.9042 | -25.9253             | 10:19          | 12:19          |
| SBP21_033              | SBP21_07             | Shark Bay 2021                   | 24/08/2021               | 112.9108             | -25.927              | 112.9033             | -25.9224             | 10:25          | 12:27          |
| SBP21_034<br>SBP21_035 | SBP21_07<br>SBP21_07 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 112.909<br>112.908   | -25.9252<br>-25.9238 | 112.9017<br>112.9001 | -25.9211<br>-25.92   | 10:28<br>10:32 | 12:31          |
| SBP21_036              | SBP21_08             | Shark Bay 2021                   | 24/08/2021               | 112.9316             | -25.8833             | 112.9237             | -25.8749             | 10:45          | 12:50          |
| SBP21_038              | SBP21_08<br>SBP21_08 | Shark Bay 2021                   | 24/08/2021               | 112.9286             | -25.8808             | 112.9223             | -25.8727             | 10:49          | 12:57          |
| SBP21_039<br>SBP21_040 | SBP21_08<br>SBP21_08 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 112.9266             | -25.8796<br>-25.8782 | 112.9199<br>112.9188 | -25.8714             | 10:52          | 13:02          |
| SBP21_041              | SBP21_09             | Shark Bay 2021                   | 24/08/2021               | 112.9177             | -25.7773             | 112.9238             | -25.7729             | 13:30          | 15:32          |
| SBP21_042<br>SBP21 043 | SBP21_09<br>SBP21_09 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 112.9196<br>112.9212 | -25.776<br>-25.7748  | 112.9251<br>112.9263 | -25.7728<br>-25.7722 | 13:35<br>13:37 | 15:35          |
| SBP21_044              | SBP21_09             | Shark Bay 2021                   | 24/08/2021               | 112.9223             | -25.7737             | 112.9272             | -25.7712             | 13:39          | 15:45          |
| SBP21_045<br>SBP21_046 | SBP21_09<br>SBP21_10 | Shark Bay 2021                   | 24/08/2021               | 112.9241             | -25.8191             | 112.9282             | -25.8143             | 13:56          | 16:02          |
| SBP21_047<br>SBP21_048 | SBP21_10<br>SBP21_10 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 24/08/2021    | 112.9425             | -25.8176             | 112.9458             | -25.8142<br>-25.8137 | 13:59<br>14:02 | 16:06          |
| SBP21_049              | SBP21_10             | Shark Bay 2021                   | 24/08/2021               | 112.946              | -25.8153             | 112.9497             | -25.8133             | 14:04          | 16:16          |
| SBP21_050<br>SBP21_051 | SBP21_10<br>SBP21 11 | Shark Bay 2021<br>Shark Bay 2021 | 24/08/2021 25/08/2021    | 112.9477<br>113.2639 | -25.8145<br>-26.5247 | 112.9519<br>113.2729 | -25.8122<br>-26.5279 | 14:06<br>07:38 | 16:21 09:39    |
| SBP21_052              | SBP21_11             | Shark Bay 2021                   | 25/08/2021               | 113.2657             | -26.5233             | 113.2742             | -26.5265             | 07:41          | 09:43          |
| SBP21_055<br>SBP21_054 | SBP21_11<br>SBP21_11 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021               | 113.267              | -26.5221             | 113.2753             | -26.5254             | 07:45          | 09:46          |
| SBP21_055              | SBP21_11             | Shark Bay 2021                   | 25/08/2021               | 113.2701             | -26.5197             | 113.278              | -26.523              | 07:47          | 09:52          |
| SBP21_057              | SBP21_12             | Shark Bay 2021                   | 25/08/2021               | 113.2249             | -26.5126             | 113.2274             | -26.5155             | 08:01          | 10:11          |
| SBP21_058<br>SBP21_059 | SBP21_12<br>SBP21_12 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021 25/08/2021    | 113.2267<br>113.2284 | -26.5116<br>-26.5107 | 113.2293<br>113.2312 | -26.5149<br>-26.5145 | 08:03          | 10:14          |
| SBP21_060              | SBP21_12             | Shark Bay 2021                   | 25/08/2021               | 113.2302             | -26.5097             | 113.2333             | -26.5139             | 08:06          | 10:19          |
| SBP21_062              | SBP21_13<br>SBP21_13 | Shark Bay 2021                   | 25/08/2021               | 113.1828             | -26.4592             | 113.1918             | -26.4622             | 10:41          | 12:40          |
| SBP21_063<br>SBP21_064 | SBP21_13<br>SBP21_12 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021               | 113.1862<br>113 1877 | -26.4581<br>-26.4569 | 113.1948<br>113 1965 | -26.4609             | 10:43<br>10:45 | 02:44          |
| SBP21_065              | SBP21_13             | Shark Bay 2021                   | 25/08/2021               | 113.1897             | -26.4554             | 113.1982             | -26.4587             | 10:45          | 12:52          |
| SBP21_066<br>SBP21_067 | SBP21_14<br>SBP21_14 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021 25/08/2021    | 113.2339<br>113.2352 | -26.4432<br>-26.442  | 113.2401<br>113.2412 | -26.444<br>-26.4423  | 10:58<br>11:01 | 13:07          |
| SBP21_068              | SBP21_14             | Shark Bay 2021                   | 25/08/2021               | 113.2365             | -26.4405             | 113.2422             | -26.4408             | 11:03          | 13:14          |
| SBP21_005              | SBP21_14<br>SBP21_14 | Shark Bay 2021                   | 25/08/2021               | 113.2392             | -26.4393             | 113.2431             | -26.438              | 11:07          | 13:21          |
| SBP21_071<br>SBP21_072 | SBP21_15<br>SBP21_15 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021               | 113.1395             | -26.3957             | 113.1554             | -26.397              | 13:46          | 15:48          |
| SBP21_073              | SBP21_15             | Shark Bay 2021                   | 25/08/2021               | 113.1433             | -26.393              | 113.1574             | -26.394              | 13:52          | 15:54          |
| SBP21_074<br>SBP21_075 | SBP21_15<br>SBP21 15 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021 25/08/2021    | 113.1449<br>113.1468 | -26.3918<br>-26.3912 | 113.1586<br>113.1601 | -26.3924<br>-26.3909 | 13:54<br>13:56 | 15:57          |
| SBP21_076              | SBP21_16             | Shark Bay 2021                   | 25/08/2021               | 113.1529             | -26.3507             | 113.1597             | -26.3458             | 14:08          | 16:26          |
| SBP21_0//<br>SBP21_078 | SBP21_10<br>SBP21_16 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021               | 113.1547             | -20.3493<br>-26.3481 | 113.1604             | -26.3442             | 14:10          | 16:30          |
| SBP21_079<br>SBP21_080 | SBP21_16<br>SBP21_16 | Shark Bay 2021<br>Shark Bay 2021 | 25/08/2021 25/08/2021    | 113.1582<br>113.1602 | -26.3472<br>-26.3461 | 113.1622<br>113.1637 | -26.3406<br>-26.3399 | 14:14<br>14:16 | 16:35<br>16:38 |
| SBP21_081              | SBP21_17             | Shark Bay 2021                   | 26/08/2021               | 113.1037             | -26.2972             | 113.1007             | -26.2946             | 07:32          | 09:26          |
| SBP21_082<br>SBP21_083 | SBP21_17<br>SBP21_17 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021<br>26/08/2021 | 113.1047<br>113.1058 | -26.2956<br>-26.2942 | 113.1015<br>113.1018 | -26.293<br>-26.2912  | 07:34<br>07:36 | U9:31<br>09:36 |
| SBP21_084              | SBP21_17             | Shark Bay 2021                   | 26/08/2021               | 113.1069             | -26.2927             | 113.1022             | -26.2894             | 07:38          | 09:42          |
| 58P21_085<br>SBP21_086 | 58P21_17<br>SBP21_18 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021<br>26/08/2021 | 113.1078<br>113.1495 | -26.2911<br>-26.2867 | 113.1025<br>113.1433 | -26.2872<br>-26.2807 | 07:39<br>07:53 | 09:47<br>10:01 |
| SBP21_087<br>SBP21_0RR | SBP21_18<br>SBP21_18 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021 26/08/2021    | 113.1506<br>113.1515 | -26.2845             | 113.1444<br>113.1453 | -26.2795<br>-26.2782 | 07:58<br>08:00 | 10:05          |
| SBP21_089              | SBP21_18             | Shark Bay 2021                   | 26/08/2021               | 113.1523             | -26.2818             | 113.1464             | -26.2767             | 08:03          | 10:10          |
| SBP21_090<br>SBP21_091 | SBP21_18<br>SBP21_19 | snarк вау 2021<br>Shark Bay 2021 | 26/08/2021<br>26/08/2021 | 113.1537<br>113.1252 | -26.2804<br>-26.2244 | 113.1476<br>113.1252 | -26.275<br>-26.2212  | U8:06<br>10:38 | 10:14<br>12:38 |
| SBP21_092              | SBP21_19             | Shark Bay 2021                   | 26/08/2021               | 113.1259             | -26.2223             | 113.1252             | -26.2191             | 10:41          | 12:40          |
| SBP21_093<br>SBP21_094 | SBP21_19<br>SBP21_19 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021<br>26/08/2021 | 113.1268<br>113.1277 | -20.2208<br>-26.2195 | 113.1261<br>113.1262 | -20.21/5<br>-26.2168 | 10:42          | 12:43          |
| SBP21_095<br>SBP21_096 | SBP21_19<br>SBP21_20 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021 26/08/2021    | 113.1288<br>113 1457 | -26.218              | 113.1264             | -26.215              | 10:46<br>10:58 | 12:49<br>13:10 |
| SBP21_097              | SBP21_20             | Shark Bay 2021                   | 26/08/2021               | 113.1464             | -26.1873             | 113.1527             | -26.1898             | 11:07          | 13:13          |
| SBP21_098<br>SBP21_099 | SBP21_20<br>SBP21_20 | Shark Bay 2021<br>Shark Bay 2021 | 26/08/2021<br>26/08/2021 | 113.1469<br>113.1474 | -26.1857<br>-26.1839 | 113.1541<br>113.1554 | -26.1884<br>-26.1868 | 11:03<br>11:05 | 13:18<br>13:23 |
| SBP21_100              | SBP21_20             | Shark Bay 2021                   | 26/08/2021               | 113.1481             | -26.1821             | 113.1567             | -26.1853             | 11:07          | 13:27          |

| Appendix Table 2. Aggregated list of species recorded across Shark Bay BRUVs surveys from         |
|---------------------------------------------------------------------------------------------------|
| 2017,2018,2019 and 2021. Species are listed alphabetically by family. Those with a dash in No. FL |
| had length estimates taken from a Western Australian BRUVs dataset.                               |

| Family                           | Binomial                                                        | Benthic MaxA | N Pela   | igic MaxN Total Ma | INN No. FL | Mean FL  | (cm) SE FL       | (cm)             | Labridae                         | Pseudojuloides sp                                    | 3   | 0  | 3       | 1       | 9.63            |         |
|----------------------------------|-----------------------------------------------------------------|--------------|----------|--------------------|------------|----------|------------------|------------------|----------------------------------|------------------------------------------------------|-----|----|---------|---------|-----------------|---------|
| Acanthuridae<br>Acanthuridae     | Acanthurus olivaceus<br>Acanthurus sp                           |              | 11       | 0                  | 11         | 8<br>51  | 26.58<br>30.75   | 0.9836           | Labridae<br>Labridae             | Stethojulis bandanensis<br>Stethojulis so            | 8   | 0  | 8       | 1 4     | 7.79            | 0.4815  |
| Acanthuridae                     | Acanthurus triostegus                                           |              | 17       | 0                  | 17         | 4        | 18.5             | 1.0576           | Labridae                         | Suezichthys cyanolaemus                              | 64  | 0  | 64      | 24      | 9.82            | 0.6005  |
| Acanthuridae                     | Naso brachycentron                                              |              | 2        | 0                  | 2          | 2        | 13.7             | 0.8983           | Labridae                         | Thalassoma lutescens                                 | 120 | 0  | 120     | 109     | 17.05           | 1.0762  |
| Acanthuridae                     | Naso hexacanthus                                                |              | 5        | 0                  | 5          | 4        | 40.14            | 2.8345           | Labridae                         | Thalassoma purpureum                                 | 6   | 0  | 6       |         | 8.2             |         |
| Acanthuridae                     | Naso sp<br>Naso tooganus                                        |              | 23       | 0                  | 23         | 8        | 43.17            | 1.965            | Labridae<br>Lamnidae             | Thalassoma septemfasciatum<br>isurus oxyrinchus      | 68  | 0  | 68<br>3 | 30<br>3 | 19.43<br>72.39  | 1.5762  |
| Acanthuridae                     | Naso unicornis                                                  |              | 9        | 0                  | 9          | 6        | 38.53            | 2.3184           | Latridae                         | Goniistius gibbosus                                  | 2   | 0  | 2       |         | 23.3            |         |
| Albulidae<br>Apozonidae          | Albula argentea<br>Ostorhinchus aureus                          |              | 36       | 0                  | 36         | 16       | 61.66<br>10.85   | 1.0756           | Latridae<br>Lethrinidae          | Goniistius rubrolabiatus<br>Lethrinus atkinsoni      | 3   | 0  | 3       | 14      | 48.7<br>32.94   | 0.9168  |
| Apogonidae                       | Ostorhinchus taeniophorus                                       |              | 1        | 0                  | 1          | 1        | 9.75             |                  | Lethrinidae                      | Lethrinus laticaudis                                 | 57  | 0  | 57      | 26      | 32.26           | 1.3033  |
| Balaenopteridae                  | Megaptera novaeangliae<br>Ralassostera acutorectrata            |              | 1        | 0                  | 1          |          | 1023.03          | 0.0112           | Lethrinidae                      | Lethrinus lentjan<br>Lethrinus miniatus              | 32  | 0  | 32      | 17      | 30.05           | 2.0418  |
| Balistidae                       | Abalistes stellatus                                             |              | 2        | ő                  | 2          | 1        | 40.37            |                  | Lethrinidae                      | Lethrinus nebulosus                                  | 114 | 0  | 114     | 54      | 51.58           | 1.6971  |
| Balistidae                       | Balistidae sp                                                   |              | 1        | 0                  | 1          |          | 23.75            |                  | Lethrinidae                      | Lethrinus punctulatus                                | 11  | 0  | 11      | 4       | 26.07           | 1.0902  |
| Balistidae                       | Sufflamen chrysopterum                                          |              | 26       | 0                  | 26         | 1        | 18.68            | 0.7661           | Lethrinidae                      | Lethnnus rubrioperculatus<br>Lethrinus so            | 4   | 0  | 8       | 1       | 41.89 29.31     |         |
| Balistidae                       | Sufflamen fraenatum                                             |              | 67       | 0                  | 67         | 39       | 29.53            | 1.1469           | Lethrinidae                      | Lethrinus variegatus                                 | 1   | 0  | 1       | 1       | 19.71           | -       |
| Balistidae                       | Sufflamen sp<br>Areidentur dursumieri                           |              | 9        | 0                  | 9          | 3        | 20.03            | 0.0702           | Loliginidae                      | Sepioteuthis sp                                      | 1   | 0  | 1       | 17      | 25.1            | 1 3767  |
| Blenniidae                       | Aspidontus taeniatus                                            |              | 7        | 0                  | 7          | 5        | 6.54             | 0.3089           | Lutjanidae                       | Lutjanus fulviflamma                                 | 2   | 0  | 2       | 1       | 27.95           |         |
| Blenniidae                       | Blenniidae sp                                                   |              | 11       | 0                  | 11         | 3        | 7.18             | 1.1518           | Lutjanidae                       | Lutjanus lemniscatus                                 | 12  | 0  | 12      | 6       | 41.35           | 1.0253  |
| Blenniidae                       | Ecsenius lineatus                                               |              | 1        | 0                  | 3          | 1        | 5.9              | 2                | Lutjanidae<br>Lutjanidae         | Lutjanus lutjanus<br>Lutjanus quinquelineatus        | 12  | 0  | 12      | 30      | 28.22           | 0.7179  |
| Blenniidae                       | Meiacanthus grammistes                                          |              | 1        | ō                  | 1          | 1        | 9.62             |                  | Lutjanidae                       | Lutjanus sp                                          | 1   | 0  | 1       | 1       | 34.76           |         |
| Blenniidae<br>Blenniidae         | Plagiotremus rhinorhynchos<br>Plagiotremus taggiograma          |              | 14       | 0                  | 14         | 7        | 7.25             | 0.5686           | Lutjanidae<br>Mobulidae          | Lutjanus vitta<br>Mobula alfredi                     | 2   | 0  | 2       | 2       | 29.68           | 0.5258  |
| Caesionidae                      | Caesio sp                                                       |              | 14       | 0                  | 14         | 10       | 16.68            | 0.5459           | Mobulidae                        | Mobula thurstoni                                     | 8   | 0  | 8       |         | 10.24           |         |
| Caesionidae                      | Caesionidae sp                                                  |              | 97       | 0                  | 97         | 4        | 16.4             | 1.0456           | Monacanthidae                    | Aluterus scriptus                                    | 3   | 7  | 10      | 6       | 26.34           | 6.4797  |
| Caesionidae                      | Pterocaesio digramma<br>Pterocaesio marri                       |              | 278      | 0                  | 278        | 29       | 18.13 21.24      | 0.8314           | Monacanthidae                    | Meuschenia sp                                        | 1   | 28 | 29      | 10      | 4.3             | 0.598   |
| Caesionidae                      | Pterocaesio sp                                                  |              | 661      | 0                  | 661        | 63       | 17.01            | 1.4602           | Monacanthidae                    | Monacanthidae sp                                     | 2   | 11 | 13      | 9       | 6.3             | 2.5124  |
| Carangidae                       | Carangidae sp<br>Caranenides fulunguttatus                      |              | 760      | 2910               | 3670       | 463      | 4.7              | 2.8833           | Monacanthidae                    | Monacanthus chinensis<br>Aluterus scriptus           | 1   | 0  | 1       |         | 13.6            | 6 4797  |
| Carangidae                       | Carangoides gymnostethus                                        |              | 1        | 0                  | 1          | -        | 37               | -                | Monacanthidae                    | Aluterus sp                                          | 0   | 1  | 1       | 1       | 4.14            | 0.47.57 |
| Carangidae                       | Carangoides orthogrammus                                        |              | 1        | 0                  | 1          | 1        | 31.93            | 4 4 3 9 5        | Monacanthidae                    | Eubalichthys caeruleoguttatus                        | 0   | 6  | 6       | 2       | 4.1             | 0.4132  |
| Carangidae                       | Carangoldes sp<br>Caranx heberi                                 |              | 14       | 0                  | 192        |          | 63.1             | 1.1290           | Mullidae                         | Parupeneus barberinoides                             | 6   | 0  | 6       | 6       | 14.55           | 0.8227  |
| Carangidae                       | Caranx sp                                                       |              | 86       | 1087               | 1173       | 101      | 4.2              | 2.0558           | Mullidae                         | Parupeneus chrysopleuron                             | 27  | 0  | 27      | 18      | 14.34           | 1.0649  |
| Carangidae                       | Decapterus sp<br>Genthaenden concierur                          |              | 265      | 1714               | 1979       | 199      | 14.2             | 2.5564           | Mullidae<br>Mullidae             | Parupeneus cyclostomus<br>Panineneus inficus         | 3   | 0  | 3       | 2       | 15.19           | 0.1432  |
| Carangidae                       | Pseudocaranx sp                                                 |              | 2951     | ő                  | 2951       | 63       | 6.96             | 1.228            | Mullidae                         | Parupeneus multifasciatus                            | 5   | 0  | 5       | 4       | 12.21           | 1.6859  |
| Carangidae                       | Selar sp                                                        |              | 59       | 0                  | 59         | 17       | 5.72             | 0.5969           | Mullidae                         | Parupeneus sp                                        | 2   | 0  | 2       | 1       | 12.61           |         |
| Carangidae                       | Seriola lalandi                                                 |              | 14       | 0                  | 14         | 13       | 77.98            | 2.7464           | Mullidae                         | Upeneus tragula                                      | 5   | 0  | 5       | 210     | 13.39           | 0.3101  |
| Carangidae                       | Seriola rivoliana                                               |              | 36       | 0                  | 36         | 5        | 19.83            | 0.8349           | Muraenidae                       | Gymnothorax prasinus                                 | 2   | 0  | 2       |         | 47.9            |         |
| Carangidae                       | Atule mate<br>Naurrates durtor                                  |              | 0        | 2                  | 2          | 1        | 29.94            |                  | Muraenidae<br>Muraenidae         | Gymnothorax sp<br>Gymnothorax thyrsoideus            | 11  | 0  | 11      |         | 39.2            |         |
| Carangidae                       | Seriola dumerili                                                |              | 0        | 1                  | 1          | 1        | 15.61            |                  | Muraenidae                       | Gymnothorax undulatus                                | 7   | 0  | 7       | 1       | 61.84           |         |
| Carangidae                       | Seriola sp                                                      |              | 0        | 4                  | 4          | 3        | 16.96            | 1.5458           | Muraenidae                       | Muraenidae sp                                        | 1   | 0  | 1       | 1       | 45.01           |         |
| Carchaminidae                    | Carcharninidae sp<br>Carcharhinus brachvurus                    |              | 1        | 1                  | 2          | 1        | 206.95           | 2                | Nemipteridae                     | Pentapodus nagasakiensis<br>Pentapodus porosus       | 1   | 0  | 4       | 1       | 8.58            |         |
| Carcharhinidae                   | Carcharhinus brevipinna                                         |              | 24       | 59                 | 83         | 54       | 140.54           | 2.5677           | Nemipteridae                     | Pentapodus vitta                                     | 683 | ō  | 683     | 132     | 17.43           | 0.5581  |
| Carcharhinidae                   | Carcharhinus limbatus                                           |              | 9        | 6                  | 15         | 8        | 173.13           | 1.9656           | Nomeidae                         | Psenes sp<br>Octoour Directo                         | 0   | 2  | 2       | 1       | 2.82            |         |
| Carcharhinidae                   | Carcharhinus plumbeus                                           |              | ŝ        | 68                 | 73         | 45       | 140.93           | 1.9538           | Odacidae                         | Heteroscarus acroptilus                              | 1   | 0  | 1       |         | 13.9            |         |
| Carcharhinidae                   | Carcharhinus sp                                                 |              | 12       | 41                 | 53         | 15       | 198.4            | 3.5402           | Odontaspididae                   | Carcharias taurus                                    | 1   | 0  | 1       | 1       | 205.87          | -       |
| Carcharhinidae<br>Carcharhinidae | Galeocerdo cuvier<br>Triaenodon obesus                          |              | 3        | 1                  | 4          | 2        | 184.62<br>132.54 | 0.423            | Orectolobidae                    | Orectolobus nutchinsi<br>Orectolobus sp              | 1   | 0  | 1       |         | 83.9            |         |
| Carcharhinidae                   | Carcharthinus falciformis                                       |              | 0        | 1                  | 1          | 1        | 196.87           |                  | Ostraciidae                      | Ostracion cubicus                                    | 1   | 0  | 1       | 1       | 26.71           |         |
| Carcharhinidae                   | Carcharhinus sorrah<br>Chostodon orraniur                       |              | 122      | 2                  | 2          | 1        | 85.04            | 0.6211           | Ostraciidae                      | Ostracion sp<br>Remoberir co                         | 2   | 0  | 2       | ;       | 22.7            | 0.4201  |
| Chaetodontidae                   | Chaetodon aureofasciatus                                        |              | 1        | 0                  | 133        |          | 9.4              | 0.0311           | Pinguipedidae                    | Parapercis clathrata                                 | 1   | 0  | 1       |         | 13.13           |         |
| Chaetodontidae                   | Chaetodon auriga                                                |              | 1        | 0                  | 1          |          | 15.3             |                  | Pinguipedidae                    | Parapercis nebulosa                                  | 7   | 0  | 7       | 4       | 15.36           | 1.3393  |
| Chaetodontidae                   | Chaetodon lineolatus<br>Chaetodon lunula                        |              | 17       | 0                  | 17         | 2        | 24.29            | 0.2246           | Platycephalidae                  | Parapercis sp<br>Platycephalus endrachtensis         | 1   | 0  | 1       | 2       | 16.07           | 0.356   |
| Chaetodontidae                   | Chaetodon plebeius                                              |              | 42       | 0                  | 42         | 14       | 12.09            | 0.5203           | Platycephalidae                  | Platycephalus indicus                                | 1   | 0  | 1       |         | 20.2            |         |
| Chaetodontidae                   | Chaetodon sp                                                    |              | 1        | 0                  | 1          | :        | 10.5             | -                | Platycephalidae                  | Platycephalus sp                                     | 7   | 0  | 7       | 1       | 18.23           | -       |
| Chaetodontidae                   | Coradion altivelis                                              |              | 1        | 0                  | 1          | -        | 12.2             |                  | Pomacanthidae                    | Centropyge tibicen                                   | 6   | 0  | 6       | 3       | 12.08           | 0.5164  |
| Chaetodontidae                   | Coradion chrysozonus                                            |              | 3        | 0                  | 3          |          | 11.4             |                  | Pomacanthidae                    | Chaetodontoplus duboulayi                            | 4   | 0  | 4       | 3       | 30.97           | 0.5064  |
| Chaetodontidae                   | Heniochus acuminatus<br>Heniochus dinhreutes                    |              | 1        | 0                  | 1          | -        | 17.8             |                  | Pomacanthidae                    | Chaetodontoplus personifer<br>Pomaranthidae so       | 12  | 0  | 12      | 8       | 25.93           | 1.2402  |
| Chaetodontidae                   | Henlochus sp                                                    |              | 3        | 0                  | 3          | 1        | 20.62            | -                | Pomacanthidae                    | Pomacanthus imperator                                | 5   | 0  | 5       | 1       | 23.59           | -       |
| Chanidae                         | Chanos chanos<br>Cholonia mudar                                 |              | 1 7      | 0                  | 1 7        |          | 71.5             | 2 0422           | Pomacanthidae                    | Pomacanthus semicirculatus<br>Abudafduf boottalencir | 19  | 0  | 19      | 5       | 31.37           | 0.5306  |
| Cheloniidae                      | Chelonia sp                                                     |              | 1        | 0                  | 1          |          | 0                | -                | Pomacentridae                    | Abudefduf sexfasciatus                               | 3   | 0  | 3       | 1       | 14.53           | 0.047   |
| Cheloniidae                      | Cheloniidae sp                                                  |              | 5        | 0                  | 5          |          | 0                |                  | Pomacentridae                    | Abudefduf vaigiensis                                 | 12  | 0  | 12      | 8       | 18.3            | 0.466   |
| Class:Cepharopoda<br>Clupeidae   | Clupeidae sp                                                    |              | 80       | 1                  | 80         | 1        | 12.85            | 2                | Pomacentridae                    | Chromis sp<br>Chromis westaustralis                  | 1   | 0  | 1798    | 180     | 5.9             | 0.5136  |
| Coryphaenidae                    | Coryphaena hippurus                                             |              | 0        | 5                  | 5          |          | 640.19           |                  | Pomacentridae                    | Dascyllus trimaculatus                               | 18  | 0  | 18      | 9       | 12.44           | 0.2907  |
| Dasyatidae                       | Bathytoshia brevicaudata<br>Dapratidae ce                       |              | 1        | 0                  | 1          |          | 84.7             |                  | Pomacentridae                    | Parma occidentalis<br>Parma co                       | 52  | 0  | 52      | 14      | 13.14           | 0.8239  |
| Dasyatidae                       | Neotrygon australiae                                            |              | 4        | 0                  | 4          | 1        | 31.28            |                  | Pomacentridae                    | Pomacentridae sp                                     | 1   | 0  | 1       | 1       | 12.55           | -       |
| Dasyatidae                       | Neotrygon sp                                                    |              | 4        | 0                  | 4          |          | 51.4             |                  | Pomacentridae                    | Pomacentrus coelestis                                | 36  | 0  | 36      | 9       | 6.01            | 0.7304  |
| Delphinidae<br>Echeneidae        | Tursiops sp<br>Echeneis naucrates                               |              | 5        | 247                | 5<br>326   | 191      | 0<br>54.36       | 2.669            | Pomacentridae<br>Pseudochromidae | Pomacentrus sp<br>Labracinus lineatus                | 3   | 0  | 3       | 1       | 8.63<br>24.68   |         |
| Elapidae                         | Disteira major                                                  |              | 1        | 0                  | 1          | 1        | 110.25           |                  | Rachycentridae                   | Rachycentron canadum                                 | 0   | 94 | 94      | 56      | 96.35           | 2.4579  |
| Elapidae                         | Hydrophis sp<br>Flanidae co                                     |              | 6        | 1                  | 7          |          | 110.2            |                  | Rhinidae                         | Rhina ancylostoma<br>Rhuncholostur australian        | 1   | 0  | 1       | -       | 162.3           | 14 799  |
| Elapidae                         | Hydrophis elegans                                               |              | 0        | 4                  | 4          | 1        | 146.13           |                  | Scaridae                         | Cetoscarus ocellatus                                 | 1   | 0  | 1       |         | 40.3            | 14.705  |
| Ephippidae                       | Platax batavianus                                               |              | 2        | 0                  | 2          | 2        | 49.01            | 1.6898           | Scaridae                         | Chlorurus microrhinos                                | 1   | 0  | 1       | 1       | 48.38           |         |
| Ephippidae                       | Platax orbicularis<br>Platax sp                                 |              | 6        | 0                  | 6          | 1        | 41.5             | 2                | Scaridae                         | Chlorurus sordidus<br>Chlorurus so                   | 13  | 0  | 13      | 2       | 12.63           | 0.0126  |
| Gobiidae                         | Gobiidae sp                                                     |              | 1        | 0                  | 1          |          | 5.9              |                  | Scaridae                         | Chlorurus spilurus                                   | 2   | 0  | 2       |         | 21              |         |
| Grammistidae                     | Grammistes sexlineatus                                          |              | 1        | 0                  | 1          |          | 7.6              | 1 6 7 7 7        | Scaridae                         | Leptoscarus vaigiensis<br>Scratidae co               | 1   | 0  | 1       | ÷       | 11.5            | ÷       |
| Haemulidae                       | Plectorhinchus albovittatus                                     |              | 2        | ő                  | 2          | 2        | 45.39            | 3.0233           | Scaridae                         | Scarus chameleon                                     | 3   | 0  | 3       |         | 23.25           |         |
| Haemulidae                       | Plectorhinchus caeruleonothus<br>Plectorhinchus flavomaculatura |              | 15       | 0                  | 15         | 13       | 58.28            | 0.8001           | Scaridae<br>Scaridae             | Scarus ghobban<br>Scarus schlegeli                   | 67  | 0  | 67      | 27      | 41.78           | 2.2535  |
| Haemulidae                       | Plectorhinchus sp                                               |              | 2        | 0                  | 2          | 1        | 43.1             | 1./34            | Scaridae                         | Scarus sp                                            | 20  | 0  | 20      | 7       | 45.07           | 2.3363  |
| Hemiscyllidae                    | Chiloscyllium punctatum                                         |              | 2        | 0                  | 2          | 1        | 67.22            | -                | Scombridae                       | Grammatorcynus bicarinatus                           | 27  | 0  | 27      | 21      | 79.38           | 2.6633  |
| Istiophoridae                    | Istiompax indica                                                |              | 0        | 3                  | 3          | 1        | 165.62           |                  | Scombridae                       | Thunnus sp                                           | 12  | 28 | 29      | 7       | +1.52<br>58.1   | 2.3373  |
| Istiophoridae                    | Istiophorus platypterus                                         |              | 0        | 2                  | 2          | 1        | 166.38           |                  | Scombridae                       | Acanthocybium solandri                               | 0   | 9  | 9       | 7       | 133.65          | 1.5346  |
| Kyphosidae                       | suvenite sp<br>Kyphosus bigibbus                                |              | 6<br>116 | 758                | /64<br>116 | 73<br>39 | 2.38<br>49.41    | 0.5819<br>1.1179 | scompridae<br>Scombridae         | Natsuwonus peramis<br>Scomberomorus commerson        | 0   | 23 | 23      | 14      | ь1.27<br>174.76 | 1.2359  |
| Kyphosidae                       | Kyphosus cornelli                                               |              | 270      | 0                  | 270        | 99       | 28.75            | 0.9718           | Scombridae                       | Thunnus albacares                                    | 0   | 12 | 12      | 4       | 78.54           | 0.7943  |
| kyphosidae<br>Kyphosidae         | kyphosus sp<br>Kyphosus sydnevanus                              |              | 49       | 0                  | 49         | -        | 45<br>50.2       | 0.2585           | scompridae<br>Scorpaenidae       | sorpaena sumptuosa                                   | 0   | 38 | 38      | 11      | 44.74<br>30.3   | 1.4759  |
| Labridae                         | Anampses caeruleopunctatus                                      |              | 6        | 0                  | 6          | 1        | 26.78            |                  | Sepiidae                         | Sepia apama                                          | 2   | 0  | 2       |         | 8.7             |         |
| Labridae                         | Anampses geographicus                                           |              | 160      | 0                  | 160        | 50       | 11.38            | 1.2915           | Serranidae                       | Acanthistius pardalotus                              | 20  | 0  | 20      | 9       | 30.68           | 0.6955  |
| Labridae                         | Anampses sp                                                     |              | 1        | 0                  | 1          | -        | 11.81            | 0.0307           | Serranidae                       | Cephalopholis boenak                                 | 1   | 0  | 1       | 1       | 27.85           |         |
| Labridae                         | Bodianus axillaris                                              |              | 4        | 0                  | 4          | 3        | 12.52            | 1.8579           | Serranidae                       | Cephalopholis miniata                                | 18  | 0  | 18      | 8       | 29.12           | 1.7041  |
| Labridae                         | eodianus prunulatus<br>Chellinus chlorourus                     |              | 43       | 0                  | 43         | 27       | 3U.9<br>9.9      | 1.3961           | Serranidae                       | cephalopholis sp<br>Epinephelus bilobatus            | 1 7 | 0  | 1 7     | 3       | 43.3<br>31.42   | 1.12    |
| Labridae                         | Cheilinus sp                                                    |              | 1        | 0                  | 1          |          | 14.8             |                  | Serranidae                       | Epinephelus fasciatus                                | 27  | 0  | 27      | 12      | 26.59           | 1.0369  |
| Labridae                         | Chellinus trilobatus<br>Chellin inermis                         |              | 1        | 0                  | 1          |          | 22.6             |                  | Serranidae                       | Epinephelus lanceolatus<br>Epinephelus maculatus     | 5   | 0  | 5       | 2       | 193.09          | 0.3295  |
| Labridae                         | Choerodon cauteroma                                             |              | 41       | ō                  | 41         | 22       | 31.85            | 1.3744           | Serranidae                       | Epinephelus multinotatus                             | 9   | 0  | 9       | 7       | 58.63           | 2.9553  |
| Labridae                         | Choerodon cephalotes                                            |              | 1        | 0                  | 1          |          | 20.9             |                  | Serranidae                       | Epinephelus rivulatus                                | 39  | 0  | 39      | 21      | 25.78           | 1.5428  |
| Labridae                         | Choerodon rubescens                                             |              | 1 163    | 0                  | 163        | 81       | 24.4<br>40.01    | 1.977            | Serranidae                       | Epinephelus tukula                                   | 1   | 0  | 1       | 1       | 64.6Z<br>152.18 |         |
| Labridae                         | Choerodon sp                                                    |              | 1        | 0                  | 1          | 1        | 36.47            |                  | Serranidae                       | Pseudanthias cooperi                                 | 7   | 0  | 7       | 2       | 8.85            | 0.4857  |
| Labridae<br>Labridae             | cirrhilabrus punctatus<br>Cirrhilabrus sp                       |              | 2        | 0                  | 2          | 2        | 12.24            | 0.1285           | Serranidae<br>Serranidae         | rseudanthias sp<br>Variola louti                     | 13  | 0  | 13      | 9       | 9.7<br>61 74    | 0.7208  |
| Labridae                         | Cirrhilabrus temminckii                                         |              | 3        | ō                  | 3          | 2        | 10.6             | 0.3961           | Serranidae                       | Variola sp                                           | 1   | ő  | 1       | 1       | 58.03           |         |
| Labridae                         | Coris auricularis                                               |              | 1496     | 0                  | 1496       | 395      | 15.79            | 2.0046           | Siganidae<br>Siganidae           | Siganus fuscescens                                   | 121 | 0  | 121     | 30      | 22.34           | 1.0254  |
| Labridae<br>Labridae             | Coris ayguta<br>Coris caudimacula                               |              | 2 71     | 0                  | 2 71       | 1<br>30  | 46.07            | 1.1601           | siganidae<br>Sillaginidae        | sigunus punctatus<br>Sillago schomburgkii            | 2   | 0  | 2       | 7       | 27.8<br>12.84   | 0.1717  |
| Labridae                         | Coris sp                                                        |              | 1        | 0                  | 1          | -        | 8.6              |                  | Sillaginidae                     | Sillago sp                                           | 9   | ő  | 9       | 1       | 15.2            |         |
| Labridae                         | Gomphosus varius<br>Halichoeres brownfield                      |              | 1        | 0                  | 1          | 1        | 23.83            |                  | Sparidae<br>Sparidae             | Acanthopagrus morrisoni<br>Pagnus auratus            | 1   | 0  | 1       | 1       | 31.88           | 2 190   |
| Labridae                         | Halichoeres melanurus                                           |              | 1        | ő                  | 1          | -        | 6.8              |                  | Sparidae                         | Rhabdosargus sarba                                   | 60  | ő  | 60      | 24      | 22.46           | 0.9954  |
| Labridae                         | Halichoeres nebulosus<br>Halichoeres so                         |              | 34       | 0                  | 34         | 8        | 7.31             | 0.5941           | Sphyraenidae                     | Sphyraena flavicauda<br>Sphyraena iolo               | 4   | 0  | 4       |         | 25.7            | 10455   |
| Labridae                         | Hemigymnus fasciatus                                            |              | 2        | 0                  | 2          | -        | 19.9             |                  | Sphyrnidae                       | Sphyrna lewini                                       | 2 0 | 1  | 1       | 1       | 103.61          | 1,3129  |
| Labridae                         | Hemigymnus melapterus                                           |              | 2        | 0                  | 2          |          | 24.3             |                  | Sphyrnidae                       | Sphyrna mokarran                                     | 0   | 1  | 1       |         | 2071.6          |         |
| Labridae                         | mistius sp<br>Labridae sp                                       |              | 3<br>22  | 0                  | 3<br>22    | 1 2      | 19.82            | 1.5878           | synodontidae<br>Synodontidae     | swunda undosquamis<br>Synodus sp                     | 42  | 0  | 42      | 23      | 41.96           | 0.891   |
| Labridae                         | Labroides dimidiatus                                            |              | 84       | 0                  | 84         | 39       | 7.43             | 0.607            | Terapontidae                     | Pelates octolineatus                                 | 10  | 0  | 10      | 2       | 17.88           | 0.4371  |
| Labridae<br>Labridae             | Macropharyngodon ornatus<br>Macropharyngodon on                 |              | 1        | 0                  | 1          | -        | 8.5<br>8         | 1                | Tetraodontidae<br>Tetraodontidae | Arothron hispidus<br>Lagocephalus sceleratus         | 1   | 0  | 1 193   | 1       | 46.97           | 0.9278  |
| Labridae                         | Notolabrus parilus                                              |              | 28       | ō                  | 28         | 7        | 21.98            | 1.131            | Tetraodontidae                   | Polyspina piosae                                     | 1   | ô  | 1       | 1       | 5.9             |         |
| Labridae                         | Ophthalmolepis lineolata                                        |              | 9        | 0                  | 9          | 6        | 14.91            | 1.2253           | Tetraodontidae                   | Tetraodontidae sp                                    | 2   | 0  | 2       | 1       | 20.5            |         |
|                                  |                                                                 |              |          |                    |            |          |                  |                  | Unknown                          | Unknown sp                                           | 4   | 0  | 4       | 1       | 25.01           | -       |



**Appendix Figure 1a.** Michaelis-Menten species accumulation curves for each year of seabed BRUVs deployments.



**Appendix Figure 1b.** Michaelis-Menten species accumulation curves for each year of midwater BRUVs deployments.